On quantum corrected Kähler potentials in F-theory

被引:0
作者
Iñaki García-Etxebarria
Hirotaka Hayashi
Raffaele Savelli
Gary Shiu
机构
[1] Theory Group,Department of Physics
[2] Physics Department,Department of Physics and Institute for Advanced Study
[3] CERN,undefined
[4] School of Physics,undefined
[5] Korea Institute for Advanced Study,undefined
[6] Max-Planck-Institut für Physik,undefined
[7] University of Wisconsin-Madison,undefined
[8] Hong Kong University of Science and Technology,undefined
来源
Journal of High Energy Physics | / 2013卷
关键词
Compactification and String Models; F-Theory; Superstrings and Heterotic Strings; Superstring Vacua;
D O I
暂无
中图分类号
学科分类号
摘要
We work out the exact in gs and perturbatively exact in α′ result for the vector multiplet moduli Kähler potential in a specific \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 2 compactification of F-theory. The well-known α′3 correction is absent, but there is a rich structure of corrections at all even orders in α′. Moreover, each of these orders independently displays an SL(2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathbb{Z} $\end{document}) invariant set of corrections in the string coupling constant. This generalizes earlier findings to the case of a non-trivial elliptic fibration. Our results pave the way for the analysis of quantum corrections in the more complicated \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 1 context, and may have interesting implications for the study of moduli stabilization in string theory.
引用
收藏
相关论文
共 252 条
[1]  
Vafa C(1996)Evidence for F-theory Nucl. Phys. B 469 403-undefined
[2]  
Donagi R(2011)Model building with F-theory Adv. Theor. Math. Phys. 15 1237-undefined
[3]  
Wijnholt M(2009)GUTs and exceptional branes in F-theory — I JHEP 01 058-undefined
[4]  
Beasley C(2009)New aspects of heterotic-F theory duality Nucl. Phys. B 806 224-undefined
[5]  
Heckman JJ(2009)GUTs and exceptional branes in F-theory — II: experimental predictions JHEP 01 059-undefined
[6]  
Vafa C(2010)Lectures on F-theory compactifications and model building Class. Quant. Grav. 27 214004-undefined
[7]  
Hayashi H(1999)M theory, orientifolds and G-flux JHEP 08 023-undefined
[8]  
Tatar R(2011)The N = 1 effective action of F-theory compactifications Nucl. Phys. B 845 48-undefined
[9]  
Toda Y(2012)Gravitational instantons and fluxes from M/F-theory on Calabi-Yau fourfolds Phys. Rev. D 85 026003-undefined
[10]  
Watari T(2012)F-theory fluxes, chirality and Chern-Simons theories JHEP 03 027-undefined