On the completely bounded approximation property of crossed products

被引:0
作者
Qing Meng
机构
[1] Qufu Normal University,School of Mathematical Sciences
来源
Proceedings - Mathematical Sciences | 2021年 / 131卷
关键词
Completely bounded approximation property; crossed product; amenable action; Primary: 46L05; 46L55;
D O I
暂无
中图分类号
学科分类号
摘要
Using the recently developed theory of Herz–Schur multipliers of a C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-dynamical system, we prove equality of the Haagerup constants for a C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebra and its crossed product by an amenable action.
引用
收藏
相关论文
共 34 条
[11]  
Ng CK(2009)Haagerup approximation property for finite von neumann algebras J. Funct. Anal. 256 3055-3070
[12]  
Jolissaint P(2018)Semigroups of Herz–Schur multipliers Math. Proc. Camb. Philos. Soc. 165 511-532
[13]  
Knudby S(2018)The weak Haagerup property Adv. Math. 331 387-438
[14]  
Knudby S(2017)Property (T) and strong property (T) for unital Bull. Aust. Math. Soc. 95 144-148
[15]  
Leung CW(2017)-algebras Ann. Funct. Anal. 8 502-511
[16]  
Ng CK(2018)Positive Herz–Schur multipliers and approximation properties of crossed products Bull. Aust. Math. Soc. 97 119-126
[17]  
Mckee A(2018)Herz–Schur multipliers of dynamical systems Rocky Mountain J. Math. 48 905-912
[18]  
Skalski A(2019)Haagerup property for C Linear and Multilinear A. 67 1294-1307
[19]  
Todorov IG(2001)-crossed products Internat. J. Math. 12 595-608
[20]  
Turowska L(1997)The weak Haagerup property for Indinana U. Math. J. 46 1311-1322