On the completely bounded approximation property of crossed products

被引:0
作者
Qing Meng
机构
[1] Qufu Normal University,School of Mathematical Sciences
来源
Proceedings - Mathematical Sciences | 2021年 / 131卷
关键词
Completely bounded approximation property; crossed product; amenable action; Primary: 46L05; 46L55;
D O I
暂无
中图分类号
学科分类号
摘要
Using the recently developed theory of Herz–Schur multipliers of a C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-dynamical system, we prove equality of the Haagerup constants for a C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebra and its crossed product by an amenable action.
引用
收藏
相关论文
共 34 条
[1]  
Anantharaman C(1995)Amenable correspondences and approximation properties for von Neumann algebras Pacific J. Math. 171 309-341
[2]  
Cowling M(1989)Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one Invent. Math. 96 507-549
[3]  
Haagerup U(1985)Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups Amer. J. Math. 107 455-500
[4]  
De Cannière J(2011)Haagerup property for J. Math. Anal. Appl. 377 631-644
[5]  
Haagerup U(2016)-algebras J. Lie Theory 26 861-887
[6]  
Dong Z(1994)Group C*-algebras without the completely bounded approximation property Trans. Amer. Math. Soc. 344 667-699
[7]  
Haagerup U(2016)Approximation properties for group C*-algebras and group von Neumann algebras Ann. Funct. Anal. 7 381-385
[8]  
Haagerup U(2002)Property J. Operator Theory 48 549-571
[9]  
Kraus J(2014) of reduced J. Funct. Anal. 266 1565-1610
[10]  
Jiang BJ(2014)-crossed products by discrete groups Trans. Amer. Math. Soc. 368 3469-3508