An inversion formula for the horizontal conical Radon transform

被引:0
作者
Duy N. Nguyen
Linh V. Nguyen
机构
[1] High School for the Gifted,Department of Mathematics
[2] University of Idaho,Faculty of Information Technology
[3] Industrial University of Ho Chi Minh City,undefined
来源
Analysis and Mathematical Physics | 2021年 / 11卷
关键词
Conical Radon transform; Ray transform; Vertical slice transform; V-line transform; Compton camera imaging; 00A69; 44A12; 97M50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the conical Radon transform on all one-sided circular cones in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{R}^3$$\end{document} with horizontal central axis whose vertices are on a vertical line. We derive an explicit inversion formula for such transform. The inversion makes use of the vertical slice transform on a sphere and V-line transform on a plane.
引用
收藏
相关论文
共 50 条
  • [1] Ambartsoumian G(2012)Inversion of the v-line radon transform in a disc and its applications in imaging Comput. Math. Appl. 64 260-265
  • [2] Basko R(1997)Analytical reconstruction formula for one-dimensional Compton camera IEEE Trans. Nucl. Sci. 44 1342-1346
  • [3] Zeng GL(1998)Application of spherical harmonics to image reconstruction for the Compton camera Phys. Med. Biol. 43 887-407
  • [4] Gullberg GT(1994)Towards direct reconstruction from a gamma camera based on Compton scattering IEEE Trans. Med. Imaging 13 398-92
  • [5] Basko R(2011)Inversion formulas for the broken-ray radon transform Inverse Probl. 27 025002-1023
  • [6] Zeng GL(2009)Single-scattering optical tomography Phys. Rev. E 79 036607-739
  • [7] Gullberg GT(1994)Spherical tomography and spherical integral geometry. Tomography, impedance imaging, and integral geometry (South Hadley, MA, 1993) Lectures Appl. Math. 30 83-277
  • [8] Cree MJ(2014)Analytical reconstruction formula for n-dimensional conical radon transform Comput. Math. Appl. 68 1016-1725
  • [9] Bones PJ(2014)Exact inversion of the conical radon transform with a fixed opening angle Inverse Probl. 30 045007-557
  • [10] Florescu L(2014)Exact reconstruction formulas for a radon transform over cones Inverse Probl. 30 035001-917