High-fidelity state transfer via quantum walks from delocalized states

被引:0
作者
João P. Engster
Rafael Vieira
Eduardo I. Duzzioni
Edgard P. M. Amorim
机构
[1] Universidade Federal de Santa Catarina,Departamento de Física
[2] Universidade Federal de São Carlos,Departamento de Física
[3] Universidade do Estado de Santa Catarina,Departamento de Física
来源
Quantum Information Processing | / 23卷
关键词
Quantum walks; State transfer; Delocalized states; Quantum circuits;
D O I
暂无
中图分类号
学科分类号
摘要
We study the state transfer through quantum walks placed on a bounded one-dimensional path. We first consider continuous-time quantum walks from a Gaussian state. We find such a state when superposing centered on the starting and antipodal positions preserves a high fidelity for a long time and when sent on large circular graphs. Furthermore, it spreads with a null group velocity. We also explore discrete-time quantum walks to evaluate the qubit fidelity throughout the walk. In this case, the initial state is a product of states between a qubit and a Gaussian superposition of position states. Then, we add two σx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _x$$\end{document} gates to confine this delocalized qubit. We also find that this bounded system dynamically enables periodic recovery of the initial separable state. We outline some applications of our results in dynamic graphs and propose quantum circuits to implement them based on the available literature.
引用
收藏
相关论文
共 151 条
[1]  
Shannon CE(1948)A mathematical theory of communication Bell Syst. Tech. J. 27 379-undefined
[2]  
Aharonov Y(1993)Quantum random walks Phys. Rev. A 48 1687-undefined
[3]  
Davidovich L(1998)Quantum computation and decision trees Phys. Rev. A 58 915-undefined
[4]  
Zagury N(2003)Quantum random walks: an introductory overview Contemp. Phys. 44 307-undefined
[5]  
Farhi E(2012)Quantum walks: a comprehensive review Quantum Inf. Process. 11 1015-undefined
[6]  
Gutmann S(2009)Universal computation by quantum walk Phys. Rev. Lett. 102 180501-undefined
[7]  
Kempe J(2010)Universal quantum computation using the discrete-time quantum walk Phys. Rev. A 81 042330-undefined
[8]  
Venegas-Andraca SE(2019)Photonic quantum information processing: a review Rep. Prog. Phys. 82 016001-undefined
[9]  
Childs AM(2003)Mixing in continuous quantum walks on graphs Quantum Inf. Comp. 3 611-undefined
[10]  
Lovett NB(2011)Perfect state transfer in quantum walks on graphs J. Comput. Theor. Nanosci. 8 422-undefined