Multiplicative Properties of the Number of k-Regular Partitions

被引:0
|
作者
Olivia Beckwith
Christine Bessenrodt
机构
[1] Emory University,Department ofMathematics and Computer Science
[2] Leibniz University Hannover,Faculty of Mathematics and Physics
来源
Annals of Combinatorics | 2016年 / 20卷
关键词
partitions; -regular partitions; partition function; generating function for ; -regular partitions; 05A17; 11P82;
D O I
暂无
中图分类号
学科分类号
摘要
In a previous paper of the second author with K. Ono, surprising multiplicative properties of the partition function were presented. Here, we deal with k-regular partitions. Extending the generating function for k-regular partitions multiplicatively to a function on k-regular partitions, we show that it takes its maximum at an explicitly described small set of partitions, and can thus easily be computed. The basis for this is an extension of a classical result of Lehmer, from which an inequality for the generating function for k-regular partitions is deduced which seems not to have been noticed before.
引用
收藏
页码:231 / 250
页数:19
相关论文
共 50 条
  • [21] Arithmetic properties of 3-regular partitions with distinct odd parts
    V. S. Veena
    S. N. Fathima
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2021, 91 : 69 - 80
  • [22] On the number of separable partitions
    Hwang, Frank K.
    Rothblum, Uriel G.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2011, 21 (04) : 423 - 433
  • [23] ARITHMAGONS AND GEOMETRICALLY INVARIANT MULTIPLICATIVE INTEGER PARTITIONS
    Franco, J. A.
    Champion, J.
    Lyons, J. W.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2016, 85 (01): : 87 - 95
  • [24] On the number of partitions into primes
    Vaughan, R. C.
    RAMANUJAN JOURNAL, 2008, 15 (01) : 109 - 121
  • [25] On the number of separable partitions
    Frank K. Hwang
    Uriel G. Rothblum
    Journal of Combinatorial Optimization, 2011, 21 : 423 - 433
  • [26] On the number of partitions of a number into distinct divisors
    Lebowitz-Lockard, Noah
    Vandehey, Joseph
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2024, 30 (03) : 654 - 661
  • [27] On the number of partitions into primes
    R. C. Vaughan
    The Ramanujan Journal, 2008, 15 : 109 - 121
  • [28] 6-regular partitions: new combinatorial properties, congruences, and linear inequalities
    Cristina Ballantine
    Mircea Merca
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [29] 6-regular partitions: new combinatorial properties, congruences, and linear inequalities
    Ballantine, Cristina
    Merca, Mircea
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (04)
  • [30] Congruences for 5-regular partitions modulo powers of 5
    Wang, Liuquan
    RAMANUJAN JOURNAL, 2017, 44 (02) : 343 - 358