Finite-size scaling for four-dimensional Higgs-Yukawa model near the Gaussian fixed point

被引:0
作者
David Y.-J. Chu
Karl Jansen
Bastian Knippschild
C.-J. David Lin
机构
[1] National Chiao-Tung University,Department of Electrophysics
[2] NIC,HISKP
[3] DESY Zeuthen,Institute of Physics
[4] Universität Bonn,Centre for High Energy Physics
[5] National Chiao-Tung University,undefined
[6] Chung-Yuan Christian University,undefined
来源
Journal of High Energy Physics | / 2019卷
关键词
Lattice Quantum Field Theory; Renormalization Group;
D O I
暂无
中图分类号
学科分类号
摘要
We analyse finite-size scaling behaviour of a four-dimensional Higgs-Yukawa model near the Gaussian infrared fixed point. Through improving the mean-field scaling laws by solving one-loop renormalisation group equations, the triviality property of this model can be manifested in the volume-dependence of moments of the scalar-field zero mode. The scaling formulae for the moments are derived in this work with the inclusion of the leading-logarithmic corrections. To test these formulae, we confront them with data from lattice simulations in a simpler model, namely the O(4) pure scalar theory, and find numerical evidence of good agreement. Our results of the finite-size scaling can in principle be employed to establish triviality of Higgs-Yukawa models, or to search for alternative scenarios in studying their fixed-point structure, if sufficiently large lattices can be reached.
引用
收藏
相关论文
共 154 条
  • [1] Aizenman M(1981)Proof of the Triviality of ϕ d4 Field Theory and Some Mean-Field Features of Ising Models for d > 4 Phys. Rev. Lett. 47 886-undefined
  • [2] Fröhlich J(1982)On the triviality of Nucl. Phys. B 200 281-undefined
  • [3] Bernreuther W(1988) theories and the approach to the critical point in d Nucl. Phys. B 295 199-undefined
  • [4] Gockeler M(2009) > 4 dimensions Phys. Rev. D 79 105002-undefined
  • [5] Wolff U(2011)Renormalization Group and Finite Size Effects in Scalar Lattice Field Theories Nucl. Phys. B 846 316-undefined
  • [6] Weisz P(2012)Precision check on triviality of ϕ Nucl. Phys. B 855 885-undefined
  • [7] Wolff U(2014) theory by a new simulation method Phys. Lett. B 733 11-undefined
  • [8] Hogervorst M(1983)Triviality of Phys. Rev. Lett. 50 1897-undefined
  • [9] Wolff U(1987) theory: small volume expansion and new data Phys. Lett. B 199 531-undefined
  • [10] Siefert J(1988)Finite size scaling and triviality of ϕ Phys. Rev. Lett. 61 678-undefined