Asymptotics of the Fast Diffusion Equation via Entropy Estimates

被引:0
作者
Adrien Blanchet
Matteo Bonforte
Jean Dolbeault
Gabriele Grillo
Juan Luis Vázquez
机构
[1] CRM,Departamento de Matemáticas
[2] University Autónoma de Madrid,Dipartimento di Matematica
[3] Politecnico di Torino,CEREMADE
[4] University Paris Dauphine,undefined
来源
Archive for Rational Mechanics and Analysis | 2009年 / 191卷
关键词
Entropy; Fisher Information; Relative Entropy; Sobolev Inequality; Relative Mass;
D O I
暂无
中图分类号
学科分类号
摘要
We consider non-negative solutions of the fast diffusion equation ut = Δum with m ∈ (0, 1) in the Euclidean space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb R}^d}$$\end{document}, d ≧ 3, and study the asymptotic behavior of a natural class of solutions in the limit corresponding to t → ∞ for m ≧ mc = (d − 2)/d, or as t approaches the extinction time when m < mc. For a class of initial data, we prove that the solution converges with a polynomial rate to a self-similar solution, for t large enough if m ≧ mc, or close enough to the extinction time if m < mc. Such results are new in the range m ≦ mc where previous approaches fail. In the range mc < m < 1, we improve on known results.
引用
收藏
页码:347 / 385
页数:38
相关论文
共 74 条
[61]  
Lieb E.H.(undefined)undefined undefined undefined undefined-undefined
[62]  
Nirenberg L.(undefined)undefined undefined undefined undefined-undefined
[63]  
Otto F.(undefined)undefined undefined undefined undefined-undefined
[64]  
Peletier M.(undefined)undefined undefined undefined undefined-undefined
[65]  
Zhang H.(undefined)undefined undefined undefined undefined-undefined
[66]  
Rodriguez A.(undefined)undefined undefined undefined undefined-undefined
[67]  
Vazquez J.L.(undefined)undefined undefined undefined undefined-undefined
[68]  
Esteban J.R.(undefined)undefined undefined undefined undefined-undefined
[69]  
Saloff-Coste L.(undefined)undefined undefined undefined undefined-undefined
[70]  
Talenti G.(undefined)undefined undefined undefined undefined-undefined