Asymptotics of the Fast Diffusion Equation via Entropy Estimates

被引:0
作者
Adrien Blanchet
Matteo Bonforte
Jean Dolbeault
Gabriele Grillo
Juan Luis Vázquez
机构
[1] CRM,Departamento de Matemáticas
[2] University Autónoma de Madrid,Dipartimento di Matematica
[3] Politecnico di Torino,CEREMADE
[4] University Paris Dauphine,undefined
来源
Archive for Rational Mechanics and Analysis | 2009年 / 191卷
关键词
Entropy; Fisher Information; Relative Entropy; Sobolev Inequality; Relative Mass;
D O I
暂无
中图分类号
学科分类号
摘要
We consider non-negative solutions of the fast diffusion equation ut = Δum with m ∈ (0, 1) in the Euclidean space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb R}^d}$$\end{document}, d ≧ 3, and study the asymptotic behavior of a natural class of solutions in the limit corresponding to t → ∞ for m ≧ mc = (d − 2)/d, or as t approaches the extinction time when m < mc. For a class of initial data, we prove that the solution converges with a polynomial rate to a self-similar solution, for t large enough if m ≧ mc, or close enough to the extinction time if m < mc. Such results are new in the range m ≦ mc where previous approaches fail. In the range mc < m < 1, we improve on known results.
引用
收藏
页码:347 / 385
页数:38
相关论文
共 74 条
  • [1] Aubin T.(1976)Problèmes isopérimétriques et espaces de Sobolev J. Differ. Geometry 11 573-598
  • [2] Barthe F.(2003)Sobolev inequalities for probability measures on the real line Studia Math. 159 481-497
  • [3] Roberto C.(1992)Sobolev inequalities, the Poisson semigroup, and analysis on the sphere Proc. Nat. Acad. Sci. USA 89 4816-4819
  • [4] Beckner W.(1993)Sharp Sobolev inequalities on the sphere and the Moser–Trudinger inequality Ann. Math. 138 213-242
  • [5] Beckner W.(2007)Hardy–Poincaré inequalities and applications to nonlinear diffusions C. R. Math. Acad. Sci. Paris. 344 431-436
  • [6] Blanchet A.(1999)Exponential integrability and transportation cost related to logarithmic Sobolev inequalities J. Funct. Anal. 163 1-28
  • [7] Bonforte M.(1983)Eine Verschärfung der Poincaré-Ungleichung Časopis Pěst. Mat. 108 78-81
  • [8] Dolbeault J.(2006)Global positivity estimates and Harnack inequalities for the fast diffusion equation J. Funct. Anal. 240 399-428
  • [9] Grillo G.(1984)First order interpolation inequalities with weights Compos. Math. 53 259-275
  • [10] Vázquez J.-L.(2001)Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities Monatsh. Math. 133 1-82