More about Wilson’s functional equation

被引:0
作者
Henrik Stetkær
机构
[1] Aarhus University,Department of Mathematics
来源
Aequationes mathematicae | 2020年 / 94卷
关键词
Functional equation; d’Alembert; Wilson; Nilpotent group; 39B32; 39B52;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a group with an involution x↦x∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \mapsto x^*$$\end{document}, let μ:G→C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu :G \rightarrow \mathbb {C}$$\end{document} be a multiplicative function such that μ(xx∗)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu (xx^*) = 1$$\end{document} for all x∈G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \in G$$\end{document}, and let the pair f,g:G→C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f,g:G \rightarrow \mathbb {C}$$\end{document} satisfy that f(xy)+μ(y)f(xy∗)=2f(x)g(y),∀x,y∈G.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} f(xy) + \mu (y)f(xy^*) = 2f(x)g(y), \ \forall x,y \in G. \end{aligned}$$\end{document}For G compact we obtain: If g is abelian, then f is abelian. For G nilpotent we obtain: (1) If G is generated by its squares and f≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \ne 0$$\end{document}, then g is abelian. (2) If g is abelian, but not a multiplicative function, then f is abelian.
引用
收藏
页码:429 / 446
页数:17
相关论文
共 50 条
[21]   A functional equation related to Whitehead’s equation on groups [J].
Hou Yu Zhao ;
Ye Luo .
Aequationes mathematicae, 2023, 97 :329-340
[22]   A functional equation related to Whitehead's equation on groups [J].
Zhao, Hou Yu ;
Luo, Ye .
AEQUATIONES MATHEMATICAE, 2023, 97 (02) :329-340
[23]   d’Alembert’s other functional equation on monoids with an involution [J].
Bruce Ebanks ;
Henrik Stetkær .
Aequationes mathematicae, 2015, 89 :187-206
[24]   d'Alembert's other functional equation on monoids with an involution [J].
Ebanks, Bruce ;
Stetkaer, Henrik .
AEQUATIONES MATHEMATICAE, 2015, 89 (01) :187-206
[25]   A VARIANT OF D'ALEMBERT'S FUNCTIONAL EQUATION ON SEMIGROUPS WITH ENDOMORPHISMS [J].
Akkaoui, Ahmed ;
El Fatini, Mohamed ;
Fadli, Brahim .
ANNALES MATHEMATICAE SILESIANAE, 2022, 36 (01) :1-14
[26]   A variant of Wigner's functional equation [J].
Turnsek, Aleksej .
AEQUATIONES MATHEMATICAE, 2015, 89 (04) :949-956
[27]   JENSEN'S FUNCTIONAL EQUATION ON SEMIGROUPS [J].
Akkaoui, A. .
ACTA MATHEMATICA HUNGARICA, 2023, 170 (01) :261-268
[28]   Jensen’s functional equation on semigroups [J].
A. Akkaoui .
Acta Mathematica Hungarica, 2023, 170 (1) :261-268
[29]   A variant of Wigner’s functional equation [J].
Aleksej Turnšek .
Aequationes mathematicae, 2015, 89 :949-956
[30]   A functional equation related to Wigner's theorem [J].
Huang, Xujian ;
Zhang, Liming ;
Wang, Shuming .
AEQUATIONES MATHEMATICAE, 2024, 98 (03) :885-894