More about Wilson’s functional equation

被引:0
作者
Henrik Stetkær
机构
[1] Aarhus University,Department of Mathematics
来源
Aequationes mathematicae | 2020年 / 94卷
关键词
Functional equation; d’Alembert; Wilson; Nilpotent group; 39B32; 39B52;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a group with an involution x↦x∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \mapsto x^*$$\end{document}, let μ:G→C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu :G \rightarrow \mathbb {C}$$\end{document} be a multiplicative function such that μ(xx∗)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu (xx^*) = 1$$\end{document} for all x∈G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \in G$$\end{document}, and let the pair f,g:G→C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f,g:G \rightarrow \mathbb {C}$$\end{document} satisfy that f(xy)+μ(y)f(xy∗)=2f(x)g(y),∀x,y∈G.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} f(xy) + \mu (y)f(xy^*) = 2f(x)g(y), \ \forall x,y \in G. \end{aligned}$$\end{document}For G compact we obtain: If g is abelian, then f is abelian. For G nilpotent we obtain: (1) If G is generated by its squares and f≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \ne 0$$\end{document}, then g is abelian. (2) If g is abelian, but not a multiplicative function, then f is abelian.
引用
收藏
页码:429 / 446
页数:17
相关论文
共 50 条
  • [1] More about Wilson's functional equation
    Stetkaer, Henrik
    AEQUATIONES MATHEMATICAE, 2020, 94 (03) : 429 - 446
  • [2] A note on Wilson's functional equation
    Stetkaer, Henrik
    AEQUATIONES MATHEMATICAE, 2017, 91 (05) : 945 - 947
  • [3] A note on Wilson’s functional equation
    Henrik Stetkær
    Aequationes mathematicae, 2017, 91 : 945 - 947
  • [4] Wilson’s functional equation with an anti-endomorphism
    M. Ayoubi
    D. Zeglami
    Y. Aissi
    Aequationes mathematicae, 2021, 95 : 535 - 549
  • [5] Wilson's functional equation with an anti-endomorphism
    Ayoubi, M.
    Zeglami, D.
    Aissi, Y.
    AEQUATIONES MATHEMATICAE, 2021, 95 (03) : 535 - 549
  • [6] On a variant of Wilson's functional equation on groups
    Stetkær H.
    aequationes mathematicae, 2004, 68 (3) : 160 - 176
  • [7] Wilson's functional equation on monoids with involutive automorphisms
    Sabour, Kh.
    Fadli, B.
    Kabbaj, S.
    AEQUATIONES MATHEMATICAE, 2016, 90 (05) : 1001 - 1011
  • [8] Wilson’s functional equation on monoids with involutive automorphisms
    Kh. Sabour
    B. Fadli
    S. Kabbaj
    Aequationes mathematicae, 2016, 90 : 1001 - 1011
  • [9] A New Variant of Wilson’s Functional Equation on Monoids
    Hajira Dimou
    Elhoucien Elqorachi
    Abdellatif Chahbi
    Acta Mathematica Sinica, English Series, 2022, 38 : 1303 - 1316
  • [10] A New Variant of Wilson's Functional Equation on Monoids
    Dimou, Hajira
    Elqorachi, Elhoucien
    Chahbi, Abdellatif
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (08) : 1303 - 1316