Stability of least energy patterns of the shadow system for an activator-inhibitor model

被引:0
作者
Wei-Ming Ni
Izumi Takagi
Eiji Yanagida
机构
[1] University of Minnesota,School of Mathematics
[2] Tohoku University,Mathematical Institute
来源
Japan Journal of Industrial and Applied Mathematics | 2001年 / 18卷
关键词
reaction-diffusion system; shadow system; spike-layer; stability; Hopf bifurcation;
D O I
暂无
中图分类号
学科分类号
摘要
Stability of stationary solutions to the shadow system for the activator-inhibitor system proposed by Gierer and Meinhardt is considered in higher dimensional domains. It is shown that a stationary solution with minimal “energy” is stable in a weak sense if the inhibitor reacts sufficiently fast, while it is unstable whenever the reaction of the inhibitor is slow. Moreover, the loss of stability results in a Hopf bifurcation.
引用
收藏
页码:259 / 272
页数:13
相关论文
共 22 条
[1]  
Crandall M.G.(1977)The Hopf bifurcation theorem in infinite dimensions Arch. Rational Mech. Anal. 67 53-72
[2]  
Rabinowitz P.H.(1981)Symmetry of positive solutions of nonlinear elliptic equations in ℝ Part A; Adv. Math. Suppl. Stud. 7A 369-402
[3]  
Gidas B.(1972). Mathematical Analysis and Applications Kybernetik (Berlin) 12 30-39
[4]  
Ni W.-M.(2000)A theory of biological pattern formation Proc. Amer. Math. Soc 128 1665-1672
[5]  
Nirenberg L.(2000)Uniqueness of the least-energy solutions for a semilinear Neumann problem SIAM J. Appl. Math. 60 778-802
[6]  
Gierer A.(1989)A metastable spike solutions for a nonlocal reaction-diffusion model Arch. Rational Mech. Anal. 105 243-266
[7]  
Meinhardt H.(1988)Uniqueness of positive solutions of Δu − J. Differential Equations 72 1-27
[8]  
Grossi M.(1991) + Comm. Pure Appl. Math. 44 819-851
[9]  
Iron D.(1993) = 0 in ℝ Duke Math. J. 70 247-281
[10]  
Ward M.J.(1995)Large amplitude stationary solutions to a chemotaxis system Japan J. Indust. Appl. Math. 12 327-365