Existence of Integral and Anti-periodic Boundary Valued Problem of Fractional Order 0<α≤3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\alpha \le 3$$\end{document}

被引:0
作者
Mohammed M. Matar
机构
[1] Al-Azhar University-Gaza,Mathematics Department
关键词
Existence; Fractional differential equations; Banach and Schauder fixed points; 26A33; 34A08;
D O I
10.1007/s40840-016-0332-4
中图分类号
学科分类号
摘要
We are concerned with the existence of solutions of a class of fractional differential equations with anti-periodic and integral boundary conditions involving the Caputo fractional derivative with order α∈(0,3]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,3]$$\end{document}. We give three results based on Banach fixed-point theorem, and Schauder fixed-point theorems.
引用
收藏
页码:959 / 973
页数:14
相关论文
共 31 条
  • [1] Zhigang H(2013)Two-point boundary value problems for fractional differential equations at resonance Bull. Malays. Math. Sci. Soc. (2) 36 747-755
  • [2] Wenbin L(2010)Mathematical modelling of different types ofinstabilities in time fractional reaction–diffusion system Comput. Math. Appl. 59 1101-1107
  • [3] Taiyong C(2013)Infinitely many solutions for a class of fractional boundary value problem Bull. Malays. Math. Sci. Soc. (2) 36 1083-1097
  • [4] Gafiychuk V(2010)On the global existence of solutions to a class of fractional differential equations Comput. Math. Appl. 59 1835-1841
  • [5] Datsko B(2011)Impulsive anti periodic boundary value problem for nonlinear differential equations of fractional order Nonlinear Anal. 74 792-804
  • [6] Jing C(2014)Multiple solutions of nonlinear boundary value problems for fractional differential equations Bull. Malays. Math. Sci. Soc. (2) 37 239-248
  • [7] Tang XH(2014)Impulsive periodic type boundary value problems for multi-term singular fractional differential equations Bull. Malays. Math. Sci. Soc. (2) 37 575-596
  • [8] Baleanu YD(2009)Boundary value problems for differential equations with fractional order and nonlocal conditions Nonlinear Anal. 71 2391-2396
  • [9] Mustafa OG(2009)Existence and uniqueness of solutions to fractional semilinear mixed Volterra Fredholm integrodifferential equations with nonlocal conditions Electron. J. Differ. Equ. 155 1-7
  • [10] Wang G(2009)Boundary value problems for fractional differential equations Georgian Math. J. 16 401-411