A wavelet-in-time, finite element-in-space adaptive method for parabolic evolution equations

被引:0
作者
Rob Stevenson
Raymond van Venetië
Jan Westerdiep
机构
[1] University of Amsterdam,Korteweg–de Vries (KdV) Institute for Mathematics
来源
Advances in Computational Mathematics | 2022年 / 48卷
关键词
Space-time variational formulations of parabolic PDEs; Quasi-best approximations; Least squares methods; Adaptive approximation; Tensor product approximation; Optimal preconditioners; 35K20; 65F08; 65M12; 65M60; 65T60;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, an r-linearly converging adaptive solver is constructed for parabolic evolution equations in a simultaneous space-time variational formulation. Exploiting the product structure of the space-time cylinder, the family of trial spaces that we consider are given as the spans of wavelets-in-time and (locally refined) finite element spaces-in-space. Numerical results illustrate our theoretical findings.
引用
收藏
相关论文
共 73 条
[1]  
Alpert BK(1993)A class of bases in L2 for the sparse representation of integral operators SIAM J. Math. Anal. 24 246-262
[2]  
Andreev R(2013)Stability of sparse space-time finite element discretizations of linear parabolic evolution equations IMA J. Numer. Anal. 33 242-260
[3]  
Andreev R(2016)Wavelet-in-time multigrid-in-space preconditioning of parabolic evolution equations SIAM J. Sci. Comput. 38 A216-A242
[4]  
Balder R(1996)The solution of multidimensional real Helmholtz equations on sparse grids. SIAM J. Sci. Comput. 17 631-646
[5]  
Zenger Ch(2001)Adaptive wavelet methods for elliptic operator equations – Convergence rates Math. Comp. 70 27-75
[6]  
Cohen A(2011)Adaptive wavelets schemes for parabolic problems: Sparse matrices and numerical results SIAM J. Numer. Anal. 49 182-212
[7]  
Dahmen W(2020)Petrov-Galerkin space-time hp-approximation of parabolic equations in H1/2 IMA J. Numer. Anal. 40 2717-2745
[8]  
DeVore R(2018)Parallel-in-space-time, adaptive finite element framework for nonlinear parabolic equations SIAM J. Sci Comput. 40 C283-C304
[9]  
Chegini NG(2021)On the Sobolev and Lp-stability of the L2-projection SIAM J. Numer. Anal. 59 2571-2607
[10]  
Stevenson RP(2017)Guaranteed, locally space-time efficient, and polynomial-degree robust a posteriori error estimates for high-order discretizations of parabolic problems SIAM J. Numer. Anal. 55 2811-2834