Band selection using hybridization of particle swarm optimization and crow search algorithm for hyperspectral data classification

被引:0
|
作者
Ram Nivas Giri
Rekh Ram Janghel
Saroj Kumar Pandey
机构
[1] National Institute of Technology,Department of Information Technology
[2] GLA university Mathura,Department of Computer Engineering and applications
来源
关键词
Hyperspectral image; Dimension reduction; Band selection; Particle swarm optimization; Crow search algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
A Hyperspectral image (HSI) contains numerous spectral bands, providing better differentiation of ground objects. Although the data from HSI are very rich in information, their processing presents some difficulties in terms of computational effort and reduction of information redundancy. These difficulties stem mainly from the fact that the HSI consists of a large number of bands along with some redundant bands. Band selection (BS) is used to select a subset of bands to reduce processing costs and eliminate spectral redundancy. BS methods based on a metaheuristic approach have become popular in recent years. However, most BS methods based on a metaheuristic approach can get stuck in the local optimum and converge slowly due to a lack of balance between exploration and exploitation. In this paper, three BS methods are proposed for HSI data. The first method applies Crow Search Algorithm (CSA) for BS. The other two proposed methods, HPSOCSA_SP and HPSOCSA_SLP, are based on the hybridization of Particle Swarm Optimization (PSO) and CSA. The purpose of these hybridizations is to balance exploration and exploitation in a search process for optimal band selection and fast convergence. In hybridization techniques, PSO and CSA exchange informative data at each iteration. HPSOCSA_SP split the population into two equal parts. PSO is applied to one part and CSA to the other. HPSOCSA_SLP selects half of the top-performing members based on fitness. PSO and CSA are applied to the selected population sequentially. Our proposed models underwent rigorous testing on four HSI datasets and showed superiority over other metaheuristic techniques.
引用
收藏
页码:26901 / 26927
页数:26
相关论文
共 50 条
  • [1] Band selection using hybridization of particle swarm optimization and crow search algorithm for hyperspectral data classification
    Giri, Ram Nivas
    Janghel, Rekh Ram
    Pandey, Saroj Kumar
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (09) : 26901 - 26927
  • [2] Band selection for hyperspectral image classification based on improved particle swarm optimization algorithm
    Li, Chenming
    Wang, Yan
    Gao, Hongmin
    Zhang, Lili
    ENGINEERING SOLUTIONS FOR MANUFACTURING PROCESSES IV, PTS 1 AND 2, 2014, 889-890 : 1073 - 1077
  • [3] An hybrid particle swarm optimization with crow search algorithm for feature selection
    Adamu, Abdulhameed
    Abdullahi, Mohammed
    Junaidu, Sahalu Balarabe
    Hassan, Ibrahim Hayatu
    MACHINE LEARNING WITH APPLICATIONS, 2021, 6
  • [4] Optimized Hyperspectral Band Selection Using Particle Swarm Optimization
    Su, Hongjun
    Du, Qian
    Chen, Genshe
    Du, Peijun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 2659 - 2670
  • [5] Hyperspectral Band Selection Based on Improved Particle Swarm Optimization Algorithm
    Zhang Liu
    Ye Nan
    Ma Ling-ling
    Wang Qi
    Lu Xue-ying
    Zhang Jia-bao
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41 (10) : 3194 - 3199
  • [6] Band selection using spectral and spatial information in particle swarm optimization for hyperspectral image classification
    Paul, Arati
    Chaki, Nabendu
    SOFT COMPUTING, 2022, 26 (06) : 2819 - 2834
  • [7] Band selection using spectral and spatial information in particle swarm optimization for hyperspectral image classification
    Arati Paul
    Nabendu Chaki
    Soft Computing, 2022, 26 : 2819 - 2834
  • [8] A diversity enhanced hybrid particle swarm optimization and crow search algorithm for feature selection
    Osei-kwakye, Jeremiah
    Han, Fei
    Amponsah, Alfred Adutwum
    Ling, Qing-Hua
    Abeo, Timothy Apasiba
    APPLIED INTELLIGENCE, 2023, 53 (17) : 20535 - 20560
  • [9] A diversity enhanced hybrid particle swarm optimization and crow search algorithm for feature selection
    Jeremiah Osei-kwakye
    Fei Han
    Alfred Adutwum Amponsah
    Qing-Hua Ling
    Timothy Apasiba Abeo
    Applied Intelligence, 2023, 53 : 20535 - 20560
  • [10] A Novel Crow Swarm Optimization Algorithm (CSO) Coupling Particle Swarm Optimization (PSO) and Crow Search Algorithm (CSA)
    Jia, Ying-Hui
    Qiu, Jun
    Ma, Zhuang-Zhuang
    Li, Fang-Fang
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021