Applications of fixed point theorems in the theory of invariant subspaces

被引:0
作者
Rafa Espínola
Miguel Lacruz
机构
[1] Universidad de Sevilla,Departamento de Análisis Matemático, Facultad de Matemáticas
来源
Fixed Point Theory and Applications | / 2012卷
关键词
invariant subspace; fixed point;
D O I
暂无
中图分类号
学科分类号
摘要
We survey several applications of fixed point theorems in the theory of invariant subspaces. The general idea is that a fixed point theorem applied to a suitable map yields the existence of invariant subspaces for an operator on a Banach space.
引用
收藏
相关论文
共 36 条
  • [1] Yadav BS(2005)The present state and heritages of the invariant subspace problem Milan J. Math 73 289-316
  • [2] Lomonosov VI(1973)Invariant subspaces of the family of operators that commute with a completely continuous operator Funkc. Anal. Prilozh 7 55-56
  • [3] Lomonosov VI(2008)Sesquitransitive and localizing operator algebras Integral Equ. Oper. Theory 60 405-418
  • [4] Radjavi H(2007)A new method for constructing invariant subspaces J. Math. Anal. Appl 333 1254-1263
  • [5] Troitsky VG(1991)An extension of Burnside’s theorem to infinite-dimensional spaces Isr. J. Math 75 329-339
  • [6] Androulakis G(1994)Lomonosov’s theorem and essentially normal operators N.Z. J. Math 23 11-18
  • [7] Lomonosov VI(2003)Graph subspaces and the spectral shift function Can. J. Math 55 449-503
  • [8] Brown SW(1954)Invariant subspaces of completely continuous operators Ann. of Math. (2) 60 345-350
  • [9] Albeverio S(1966)Solution of an invariant subspace problem of K. T. Smith and P. R. Halmos Pac. J. Math 16 421-431
  • [10] Makarov KA(1966)Invariant subspaces of polynomially compact operators Pac. J. Math 16 433-437