Weighted estimate for the convergence rate of a projection difference scheme for a parabolic equation and its application to the approximation of the initial-data control problem

被引:0
作者
A. V. Razgulin
机构
[1] Moscow State University,Faculty of Computational Mathematics and Cybernetics
来源
Computational Mathematics and Mathematical Physics | 2010年 / 50卷
关键词
projection difference scheme; parabolic equation; convergence rate; control problem; convergence with respect to functional;
D O I
暂无
中图分类号
学科分类号
摘要
A new technique is proposed for analyzing the convergence of a projection difference scheme as applied to the initial value problem for a linear parabolic operator-differential equation. The technique is based on discrete analogues of weighted estimates reflecting the smoothing property of solutions to the differential problem for t > 0. Under certain conditions on the right-hand side, a new convergence rate estimate of order O(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt \tau $$\end{document} + h) is obtained in a weighted energy norm without making any a priori assumptions on the additional smoothness of weak solutions. The technique leads to a natural projection difference approximation of the problem of controlling nonsmooth initial data. The convergence rate estimate obtained for the approximating control problems is of the same order O(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt \tau $$\end{document} + h) as for the projection difference scheme.
引用
收藏
页码:969 / 983
页数:14
相关论文
共 8 条
  • [1] Zlotnik A. A.(1978)A n Estimate of the Convergence Rate in Zh. Vychisl. Mat. Mat. Fiz. 18 1454-1465
  • [2] Zlotnik A. A.(1980) of Projection Difference Schemes for Parabolic Equations Vestn. Mosk. Univ., Ser. 15: Vychisl. Mat. Kibern. 1 27-35
  • [3] Smagin V. V.(1997)A n Estimate of the Convergence Rate in Mat. Sb. 188 143-160
  • [4] Smagin V. V.(1994)( Mat. Sb. 185 79-94
  • [5] Razgulin A. V.(2001)) of Projection Difference Schemes for Parabolic Equations Zh. Vychisl. Mat. Mat. Fiz. 41 1844-1856
  • [6] Razgulin A. V.(2005)Estimates for the Convergence Rate of Projection and Projection-Difference Methods as Applied to Weakly Solvable Parabolic Equations Zh. Vychisl. Mat. Mat. Fiz. 45 1848-1859
  • [7] Pulin D. S.(2006)Coercive Error Estimates in the Projection and Projection-Difference Methods for Parabolic Equations Comp. Math. Model. 17 155-171
  • [8] Razgulin A. V.(undefined)Approximation of the Problem of Controlling Arguments Transformation in a Nonlinear Parabolic Equation undefined undefined undefined-undefined