On cubic multisections of Eisenstein series

被引:0
作者
Andrew Alaniz
Tim Huber
机构
[1] University of Texas,Department of Mathematics
[2] Pan American,undefined
来源
The Ramanujan Journal | 2014年 / 35卷
关键词
Eisenstein series; Cubic theta functions; Cubic multisections; -Cores; 11F11; 11F33;
D O I
暂无
中图分类号
学科分类号
摘要
A systematic procedure for generating cubic multisections of Eisenstein series is given. The relevant series are determined from Fourier expansions for Eisenstein series by restricting the congruence class of the summation index modulo three. We prove that the resulting series are rational functions of η(τ) and η(3τ), where η is the Dedekind eta function. A more general treatment of cubic dissection formulas is given by describing the dissection operators in terms of linear transformations. These operators exhibit properties that mirror those of similarly defined quintic operators.
引用
收藏
页码:391 / 403
页数:12
相关论文
共 19 条
[1]  
Berndt B.C.(1995)Ramanujan’s theories of elliptic functions to alternative bases Trans. Am. Math. Soc. 347 4163-4244
[2]  
Bhargava S.(1991)A cubic counterpart of Jacobi’s identity and the AGM Trans. Am. Math. Soc. 323 691-701
[3]  
Garvan F.(1994)Some cubic modular identities of Ramanujan Trans. Am. Math. Soc. 343 35-47
[4]  
Borwein J.M.(2006)Cubic elliptic functions Ramanujan J. 11 355-397
[5]  
Borwein P.B.(1990)Cranks and Invent. Math. 101 1-17
[6]  
Borwein J.M.(1996)-cores Trans. Am. Math. Soc. 348 331-347
[7]  
Borwein P.B.(2014)Defect zero J. Number Theory 134 49-92
[8]  
Garvan F.G.(1969)-blocks for finite simple groups Am. Math. Mon. 76 395-397
[9]  
Cooper S.(2000)A theory of theta functions to the quintic base Fibonacci Q. 38 39-48
[10]  
Garvan F.(2002)Some congruences for the elementary divisor functions Can. Math. Bull. 45 294-308