Hierarchical Dirichlet scaling process

被引:0
作者
Dongwoo Kim
Alice Oh
机构
[1] The Australian National University,
[2] KAIST,undefined
来源
Machine Learning | 2017年 / 106卷
关键词
Topic modeling; Dirichlet process; Hierarchical Dirichlet process;
D O I
暂无
中图分类号
学科分类号
摘要
We present the hierarchical Dirichlet scaling process (HDSP), a Bayesian nonparametric mixed membership model. The HDSP generalizes the hierarchical Dirichlet process to model the correlation structure between metadata in the corpus and mixture components. We construct the HDSP based on the normalized gamma representation of the Dirichlet process, and this construction allows incorporating a scaling function that controls the membership probabilities of the mixture components. We develop two scaling methods to demonstrate that different modeling assumptions can be expressed in the HDSP. We also derive the corresponding approximate posterior inference algorithms using variational Bayes. Through experiments on datasets of newswire, medical journal articles, conference proceedings, and product reviews, we show that the HDSP results in a better predictive performance than labeled LDA, partially labeled LDA, and author topic model and a better negative review classification performance than the supervised topic model and SVM.
引用
收藏
页码:387 / 418
页数:31
相关论文
共 33 条
[1]  
Blei DM(2006)Variational inference for dirichlet process mixtures Bayesian Analysis 1 121-144
[2]  
Jordan MI(2007)Generalized spatial dirichlet process models Biometrika 94 809-825
[3]  
Duan JA(2008)Kernel stick-breaking processes Biometrika 95 307-323
[4]  
Guindani M(1995)Bayesian density estimation and inference using mixtures Journal of the American Statistical Association 90 577-588
[5]  
Gelfand AE(2005)Bayesian nonparametric spatial modeling with dirichlet process mixing Journal of the American Statistical Association 100 1021-1035
[6]  
Dunson DB(2006)Order-based dependent dirichlet processes Journal of the American statistical Association 101 179-194
[7]  
Park JH(2013)Stochastic variational inference The Journal of Machine Learning Research 14 1303-1347
[8]  
Escobar MD(1999)An introduction to variational methods for graphical models Machine Learning 37 183-233
[9]  
West M(1964)Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis Psychometrika 29 1-27
[10]  
Gelfand AE(2012)The discrete infinite logistic normal distribution Bayesian Analysis 7 997-1034