A constructive study of identifiability and controllability of linear stationary differential-algebraic systems

被引:0
|
作者
S. A. Minyuk
A. V. Metel’skii
机构
[1] Grodno State University,
[2] Belarus National Technical University,undefined
来源
Differential Equations | 2006年 / 42卷
关键词
Observation System; Admissible Control; Reconstruction Operation; Piecewise Continuous Function; Constructive Study;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1596 / 1603
页数:7
相关论文
共 50 条
  • [21] A remark on the controllability problem for differential-algebraic dynamical systems
    Krakhotko V.V.
    Razmyslovich G.P.
    Differential Equations, 2005, 41 (9) : 1364 - 1366
  • [22] Controllability of linear algebraic differential systems
    Chistyakov, VF
    Shcheglova, AA
    AUTOMATION AND REMOTE CONTROL, 2002, 63 (03) : 399 - 412
  • [23] Robust Controllability of Linear Differential-Algebraic Equations with Unstructured Uncertainty
    Petrenko P.S.
    Journal of Applied and Industrial Mathematics, 2018, 12 (03) : 519 - 530
  • [24] Controllability of Linear Algebraic Differential Systems
    V. F. Chistyakov
    A. A. Shcheglova
    Automation and Remote Control, 2002, 63 : 399 - 412
  • [25] Observability problems for regular stationary differential-algebraic systems
    A. V. Metel’skii
    S. A. Minyuk
    O. A. Panasik
    Journal of Computer and Systems Sciences International, 2010, 49 : 537 - 547
  • [26] Observability problems for regular stationary differential-algebraic systems
    Metel'skii, A. V.
    Minyuk, S. A.
    Panasik, O. A.
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2010, 49 (04) : 537 - 547
  • [27] Controllability of switched differential-algebraic equations
    Kuesters, Ferdinand
    Ruppert, Markus G. -M.
    Trenn, Stephan
    SYSTEMS & CONTROL LETTERS, 2015, 78 : 32 - 39
  • [28] Correction to: Relative genericity of controllability and stabilizability for differential-algebraic systems
    Achim Ilchmann
    Jonas Kirchhoff
    Mathematics of Control, Signals, and Systems, 2023, 35 : 951 - 955
  • [29] On the nonresonance property of linear differential-algebraic systems
    Shcheglova, A. A.
    Matveeva, I. I.
    DIFFERENTIAL EQUATIONS, 2012, 48 (01) : 26 - 43
  • [30] On the nonresonance property of linear differential-algebraic systems
    A. A. Shcheglova
    I. I. Matveeva
    Differential Equations, 2012, 48 : 26 - 43