Modeling, dynamical analysis and numerical simulation of a new 3D cubic Lorenz-like system

被引:0
作者
Haijun Wang
Guiyao Ke
Jun Pan
Qifang Su
机构
[1] Taizhou University,School of Electronic and Information Engineering (School of Big Data Science)
[2] Zhejiang Guangsha Vocational and Technical University of construction,School of Information
[3] GongQing Institute of Science and Technology,School of Information Engineering
[4] School of Science,Department of Big Data Science
[5] Zhejiang University of Science and Technology,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Little seems to be considered about the globally exponentially asymptotical stability of parabolic type equilibria and the existence of heteroclinic orbits in the Lorenz-like system with high-order nonlinear terms. To achieve this target, by adding the nonlinear terms yz and x2y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^{2}y$$\end{document} to the second equation of the system, this paper introduces the new 3D cubic Lorenz-like system: x˙=a(y-x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{x}=a(y - x)$$\end{document}, y˙=b1y+b2yz+b3xz+b4x2y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{y}=b_{1}y+b_{2}yz+b_{3}xz+b_{4}x^{2}y$$\end{document}, z˙=-cz+y2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{z}= -cz + y^{2}$$\end{document}, which does not belong to the generalized Lorenz systems family. In addition to giving rise to generic and degenerate pitchfork bifurcation, Hopf bifurcation, hidden Lorenz-like attractors, singularly degenerate heteroclinic cycles with nearby chaotic attractors, etc., one still rigorously proves that not only the parabolic type equilibria Sx={(x,x,x2c)|x∈R,c≠0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{x} = \{(x, x, \frac{x^{2}}{c})|x\in \mathbb {R}, c\ne 0\}$$\end{document} are globally exponentially asymptotically stable, but also there exists a pair of symmetrical heteroclinic orbits with respect to the z-axis, as most other Lorenz-like systems. This study may offer new insights into revealing some other novel dynamic characteristics of the Lorenz-like system family.
引用
收藏
相关论文
共 142 条
[1]  
Kim D(2013)A new chaotic attractor and its robust function projective synchronization Nonlinear Dyn. 73 1883-1893
[2]  
Chang P(1963)Deterministic nonperiodic flow J. Atmos. Sci. 20 130-141
[3]  
Kim S(1958)Oscillations of a system of disk dynamos Proc. Camb. Phil. Soc. 54 89-105
[4]  
Lorenz EN(1980)On the bifurcation of a symmetric limit cycle to an asymmetric one in a simple model Phys. Lett. A 76 201-204
[5]  
Rikitake T(2011)Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits J. Comput. Syst. Sci. Int. 50 511-543
[6]  
Shimizu T(1999)Yet another chaotic attractor Int. J. Bifurc. Chaos 9 1465-1466
[7]  
Morioka N(2002)A new chaotic attractor coined Int. J. Bifurc. Chaos 12 659-661
[8]  
Bragin V(2008)A three-scroll chaotic attractor Phys. Lett. A 372 387-393
[9]  
Vagaitsev V(2008)On the global dynamics of the Rabinovich system J. Phys. A Math. Theor. 41 275210-1-21
[10]  
Kuznetsov N(2012)A chaotic system with only one stable equilibrium Commun. Nonlinear Sci. Numer. Simulat. 17 1264-1272