Few-shot out-of-scope intent classification: analyzing the robustness of prompt-based learning

被引:0
作者
Yiwei Jiang
Maarten De Raedt
Johannes Deleu
Thomas Demeester
Chris Develder
机构
[1] Ghent University – imec,IDLab
来源
Applied Intelligence | 2024年 / 54卷
关键词
Few-shot learning; Prompt-based models; Outlier/novelty detection; Dialogue intent classification;
D O I
暂无
中图分类号
学科分类号
摘要
Out-of-scope (OOS) intent classification is an emerging field in conversational AI research. The goal is to detect out-of-scope user intents that do not belong to a predefined intent ontology. However, establishing a reliable OOS detection system is challenging due to limited data availability. This situation necessitates solutions rooted in few-shot learning techniques. For such few-shot text classification tasks, prompt-based learning has been shown more effective than conventionally finetuned large language models with a classification layer on top. Thus, we advocate for exploring prompt-based approaches for OOS intent detection. Additionally, we propose a new evaluation metric, the Area Under the In-scope and Out-of-Scope Characteristic curve (AU-IOC). This metric addresses the shortcomings of current evaluation standards for OOS intent detection. AU-IOC provides a comprehensive assessment of a model’s dual performance capacities: in-scope classification accuracy and OOS recall. Under this new evaluation method, we compare our prompt-based OOS detector against 3 strong baseline models by exploiting the metadata of intent annotations, i.e., intent description. Our study found that our prompt-based model achieved the highest AU-IOC score across different data regimes. Further experiments showed that our detector is insensitive to a variety of intent descriptions. An intriguing finding shows that for extremely low data settings (1- or 5-shot), employing a naturally phrased prompt template boosts the detector’s performance compared to rather artificially structured template patterns.
引用
收藏
页码:1474 / 1496
页数:22
相关论文
共 50 条
  • [21] Semantic-Based Few-Shot Classification by Psychometric Learning
    Yin, Lu
    Menkovski, Vlado
    Pei, Yulong
    Pechenizkiy, Mykola
    ADVANCES IN INTELLIGENT DATA ANALYSIS XX, IDA 2022, 2022, 13205 : 392 - 403
  • [22] An Incremental Malware Classification Approach Based on Few-Shot Learning
    Qiang, Qian
    Cheng, Mian
    Hu, Yang
    Zhou, Yuan
    Sun, Jiawei
    Ding, Yu
    Qi, Zisen
    Jiao, Fei
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 2682 - 2687
  • [23] Recognizing Medical Search Query Intent by Few-shot Learning
    Wang, Yaqing
    Wang, Song
    Li, Yanyan
    Dou, Dejing
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 502 - 512
  • [24] Few-shot intent detection with mutual information and contrastive learning
    Yang, Shun
    Du, YaJun
    Huang, JiaMing
    Li, XianYong
    Du, ShangYi
    Liu, Jia
    Li, YanLi
    APPLIED SOFT COMPUTING, 2024, 167
  • [25] Few-shot learning for short text classification
    Yan, Leiming
    Zheng, Yuhui
    Cao, Jie
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (22) : 29799 - 29810
  • [26] Few-shot learning for short text classification
    Leiming Yan
    Yuhui Zheng
    Jie Cao
    Multimedia Tools and Applications, 2018, 77 : 29799 - 29810
  • [27] Diversified Contrastive Learning For Few-Shot Classification
    Lu, Guangtong
    Li, Fanzhang
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT I, 2023, 14254 : 147 - 158
  • [28] Visual Classification of Malware by Few-shot Learning
    Tran, Kien
    Kubo, Masao
    Sato, Hiroshi
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB2020), 2020, : 770 - 774
  • [29] Few-Shot Learning for Medical Image Classification
    Cai, Aihua
    Hu, Wenxin
    Zheng, Jun
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2020, PT I, 2020, 12396 : 441 - 452
  • [30] Spatial Contrastive Learning for Few-Shot Classification
    Ouali, Yassine
    Hudelot, Celine
    Tami, Myriam
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, 2021, 12975 : 671 - 686