Normal family of meromorphic functions concerning fixed-points

被引:0
作者
Caiyun Fang
Yan Xu
机构
[1] Nanjing Normal University,School of Mathematical Sciences
来源
Analysis and Mathematical Physics | 2019年 / 9卷
关键词
Normal family; Meromorphic function; Fixed-point; 30D45;
D O I
暂无
中图分类号
学科分类号
摘要
Let A>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A>1$$\end{document} be a constant and F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} be a family of meromorphic functions defined in a domain D. For each f∈F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in \mathcal {F}$$\end{document}, f has only zeros of multiplicity at least 3 and satisfies the following conditions: (1) |f″′(z)|≤A|z|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|f^{\prime \prime \prime }(z)|\le A|z|$$\end{document} when f(z)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(z)=0$$\end{document}; (2) f″′(z)≠z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^{\prime \prime \prime }(z)\ne z$$\end{document}; (3) all poles of f are multiple. In this paper, we characterize the non-normal sequences of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document}.
引用
收藏
页码:197 / 207
页数:10
相关论文
共 21 条
[1]  
Chang JM(2012)Normal families of meromorphic functions whose derivatives omit a holomorphic function Sci. China Ser. Math. 55 1669-1676
[2]  
Chen CN(2015)Normality concerning exceptional functions Rocky Mt. J. Math. 45 157-168
[3]  
Xu Y(1979)A normal criterion of meromorphic families Sci. Math. Issue I 267-274
[4]  
Gu YX(2007)Normal families of holomorphic functions with multiple zeros Conf. Geom. Dyn. 11 101-106
[5]  
Pang XC(2002)Normal families of meromorphic functions whose derivatives omit a function Comput. Methods Funct. 2 257-265
[6]  
Fang ML(2000)Normal families and shared values Bull. Lond. Math. Soc. 32 325-331
[7]  
Zalcman L(2003)Normal families of meromorphic functions with multiple zeros and poles Isr. J. Math. 136 1-9
[8]  
Pang XC(1998)Picard values and normal families of meromorphic functions with multiple zeros Acta Math. Sin. (N.S.) 14 17-26
[9]  
Yang DG(2004)Normality and exceptional functions of derivatives J. Aust. Math. Soc. 76 403-413
[10]  
Zalcman L(2016)Normal families and fixed-points of meromorphic functions Monatsh Math. 179 471-485