Modelling of all-chalcogenide all-normal dispersion photonic crystal fiber for ultraflat mid-infrared supercontinuum generation

被引:0
|
作者
Abdelkader Medjouri
Djamel Abed
机构
[1] University of EL Oued,LEVRES Laboratory
[2] Université 8 mai 1945 Guelma,LABCAV Laboratory
来源
关键词
Photonic crystal fiber; arsenic-free chalcogenide glass; supercontinuum generation; mid-infrared photonics; coherent laser sources;
D O I
暂无
中图分类号
学科分类号
摘要
We design an all-solid Photonic Crystal Fiber (PCF) with all-normal dispersion profile to achieve broadband, ultraflat-top and coherent supercontinuum generation in the mid-infrared spectral region, by using sub-nanojoule laser pulses. Two environment friendly and thermally compatible chalcogenide glasses, namely Ge15Sb15Se70\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {Ge}}_{15} {\mathrm {Sb}}_{15}{\mathrm {Se}}_{70}$$\end{document} and Ge20Se80\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {Ge}}_{20}{\mathrm {Se}}_{80}$$\end{document}, are used as background material and for solid rods, respectively. To the best of our knowledge, this is the first report of an all-solid PCF made of non-toxic ChG glasses for MIR SC generation. The finite difference method is employed to investigate and optimize the guiding linear and nonlinear properties. Simulations results indicate that high Kerr nonlinearity up to 2.21W-1m-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.21 ~{\mathrm {~W}}^{-1} {\mathrm {~m}}^{-1}$$\end{document} at 3μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3 ~\upmu {\mathrm {m}}$$\end{document} and all-normal dispersion profile over the entire wavelength range are successfully achieved for a structure design with cladding pitch Λ=3μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda =3 ~\upmu {\mathrm {m}}$$\end{document} and solid rods diameter d=1.4μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=1.4 ~\upmu {\mathrm {m}}$$\end{document}. Furthermore, by pumping at 3μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3 ~\upmu {\mathrm {m}}$$\end{document} a 50fs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$50 ~{\mathrm {fs}}$$\end{document} duration optical pulses with a total energy of 900pJ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$900 ~{\mathrm {pJ}}$$\end{document} into 10mm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10 {\mathrm {~mm}}$$\end{document} PCF long, a bright, broadband and perfectly coherent supercontinuum spectrum with -5dB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-5 {\mathrm {~dB}}$$\end{document} bandwidth covering the wavelength range from 1.6μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.6 ~\upmu {\mathrm {m}}$$\end{document} to 7μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$7 ~\upmu {\mathrm {m}}$$\end{document}, is generated. The proposed all-solid PCF based SC laser source is found promising for various potential mid-infrared applications, covering the molecular fingerprint region, such as high resolution imaging of biological tissues, monitoring of greenhouse gases and materials characterization.
引用
收藏
相关论文
共 50 条
  • [1] Modelling of all-chalcogenide all-normal dispersion photonic crystal fiber for ultraflat mid-infrared supercontinuum generation
    Medjouri, Abdelkader
    Abed, Djamel
    OPTICAL AND QUANTUM ELECTRONICS, 2021, 53 (07)
  • [2] All-Normal Dispersion Chalcogenide PCF for Ultraflat Mid-Infrared Supercontinuum Generation
    Karim, M. R.
    Ahmad, H.
    Rahman, B. M. A.
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2017, 29 (21) : 1792 - 1795
  • [3] Broadband Coherent Mid-Infrared Supercontinuum Generation in All-Chalcogenide Microstructured Fiber With All-Normal Dispersion
    Xiao, Kun
    Ye, Yudong
    Min, Rui
    Frontiers in Physics, 2022, 10
  • [4] Broadband Coherent Mid-Infrared Supercontinuum Generation in All-Chalcogenide Microstructured Fiber With All-Normal Dispersion
    Xiao, Kun
    Ye, Yudong
    Min, Rui
    FRONTIERS IN PHYSICS, 2022, 10
  • [5] Mid-infrared flattened supercontinuum generation in all-normal dispersion tellurium chalcogenide fiber
    Jiao, Kai
    Yao, Jinmei
    Zhao, Zheming
    Wang, Xiange
    Si, Nian
    Wang, Xunsi
    Chen, Peng
    Xue, Zugang
    Tian, Youmei
    Zhang, Bin
    Zhang, Peiqing
    Dai, Shixun
    Nie, Qiuhua
    Wang, Rongping
    OPTICS EXPRESS, 2019, 27 (03): : 2036 - 2043
  • [6] Modeling of dispersion engineered chalcogenide rib waveguide for ultraflat mid-infrared supercontinuum generation in all-normal dispersion regime
    H. Ahmad
    M. R. Karim
    B. M. A. Rahman
    Applied Physics B, 2018, 124
  • [7] Modeling of dispersion engineered chalcogenide rib waveguide for ultraflat mid-infrared supercontinuum generation in all-normal dispersion regime
    Ahmad, H.
    Karim, M. R.
    Rahman, B. M. A.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2018, 124 (03):
  • [8] Chalcogenide photonic crystal fiber for ultraflat mid-infrared supercontinuum generation
    Sandeep Vyas
    Takasumi Tanabe
    Manish Tiwari
    Ghanshyam Singh
    Chinese Optics Letters, 2016, 14 (12) : 146 - 150
  • [9] Chalcogenide photonic crystal fiber for ultraflat mid-infrared supercontinuum generation
    Vyas, Sandeep
    Tanabe, Takasumi
    Tiwari, Manish
    Singh, Ghanshyam
    CHINESE OPTICS LETTERS, 2016, 14 (12)
  • [10] All-Normal-Dispersion Chalcogenide Waveguides for Ultraflat Supercontinuum Generation in the Mid-Infrared Region
    Karim, M. R.
    Ahmad, H.
    Rahman, B. M. A.
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2017, 53 (02)