The most general 4D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{D} $$\end{document}N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 superconformal blocks for scalar operators

被引:0
作者
Zhijin Li
Ning Su
机构
[1] Texas A&M University,George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy
关键词
Conformal and W Symmetry; Superspaces; Supersymmetric Effective Theories;
D O I
10.1007/JHEP05(2016)163
中图分类号
学科分类号
摘要
We compute the most general superconformal blocks for scalar operators in 4D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{D} $$\end{document}N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 superconformal field theories. Specifically we employ the supershadow formalism to study the four-point correlator 〈Φ1Φ2Φ3Φ4〉, in which the four scalars, Φi, have arbitrary scaling dimensions and R-charges. The only constraint on the R-charges is from R-symmetry invariance of the four-point correlator and the exchanged operators can have arbitrary R-charges. Our results extend previous studies on 4D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{D} $$\end{document}N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 superconformal blocks to the most general case, which are the essential ingredient for bootstrapping mixed correlators of scalars with independent scaling dimensions and R-charges.
引用
收藏
相关论文
共 140 条
  • [1] Ferrara S(1973)Tensor representations of conformal algebra and conformally covariant operator product expansion Annals Phys. 76 161-undefined
  • [2] Grillo AF(1974)Nonhamiltonian approach to conformal quantum field theory Zh. Eksp. Teor. Fiz. 66 23-undefined
  • [3] Gatto R(1977)Duality in quantum field theory Nucl. Phys. B 118 445-undefined
  • [4] Polyakov AM(2008) 4 JHEP 12 031-undefined
  • [5] Mack G(2009)Universal Constraints on Conformal Operator Dimensions Phys. Rev. D 80 045006-undefined
  • [6] Rattazzi R(2011) 4 JHEP 05 017-undefined
  • [7] Rychkov VS(2012) 4 JHEP 05 110-undefined
  • [8] Tonni E(2012) 3 Phys. Rev. D 86 025022-undefined
  • [9] Vichi A(2014)( JHEP 06 091-undefined
  • [10] Rychkov VS(2013)) Phys. Rev. Lett. 111 071601-undefined