Orbits of Positive Operators from a Differentiable Viewpoint

被引:0
作者
G. Corach
A. Maestripieri
D. Stojanoff
机构
[1] Facultad de Ingeniería-UBA,Depto. de Matemática
[2] CONICET,Instituto Argentino de Matematica
[3] UNGS,Instituto de Ciencias
来源
Positivity | 2004年 / 8卷
关键词
closed range positive operators; differential geometry; Thompson components;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{A}$$ \end{document} be a unital C*-algebra and G the group of units of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{A}$$ \end{document}. A geometrical study of the action of G over the set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{A}$$ \end{document}+ of all positive elements of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{A}$$ \end{document} is presented. The orbits of elements with closed range by this action are provided with a structure of differentiable homogeneous space with a natural connection. The orbits are partitioned in ''components'' which also have a rich geometrical structure.
引用
收藏
页码:31 / 48
页数:17
相关论文
共 50 条
  • [1] Andruchow E.(2000)Projective spaces of a C Integral Equations and Operator Theory 37 143-168
  • [2] Corach G.(1993)-algebra SIAM J. Control Optimization 31 942-959
  • [3] Stojanoff D.(1986)Kalman filtering with random coefficients and contractions Proc. Am. Math. Soc. 98 135-141
  • [4] Bougerol P.(1999)An extended Chentsov characterization of the information metric Positivity 4 297-315
  • [5] Campbell L.L.(2000)Differential and metrical structure of positive operators Reports on Mathematical Physics 45 23-37
  • [6] Corach G.(2001)Differential geometry on Thompson's components of positive operators Rep. Math. Phys. 47 287-299
  • [7] Maestripieri A.(1993)Geometry of positive operators and Ulhmann's approach to the geometric phase Integral Equations and Operator Theory 16 333-359
  • [8] Corach G.(1993)The geometry of spaces of selfadjoint invertible elements of a C Adv. Math. 101 279-289
  • [9] Maestripieri A.(1990)-algebra Lett. Math. Phys. 19 205-210
  • [10] Corach G.(1989)The geometry of spaces of projections in C J. Phys. A, Math. Gen. 22 3167-3170