Wavelet Characterization of Local Muckenhoupt Weighted Sobolev Spaces with Variable Exponents

被引:0
作者
Mitsuo Izuki
Toru Nogayama
Takahiro Noi
Yoshihiro Sawano
机构
[1] Tokyo City University,Faculty of Liberal Arts and Sciences
[2] Tokyo Metropolitan University,Department of Mathematical Science
[3] Chuo University,Department of Mathematical Science
[4] People’s Friendship University of Russia,undefined
来源
Constructive Approximation | 2023年 / 57卷
关键词
Variable exponent; Wavelet; Sobolev spaces; Local Muckenhoupt weight; 42B35; 42C40;
D O I
暂无
中图分类号
学科分类号
摘要
The goal of this paper is to define local weighted variable Sobolev spaces of fractional and negative order and their characterization by wavelets. We first consider local weighted variable Sobolev spaces by means of weak derivatives and obtain a wavelet characterization for these spaces. Using the Bessel potentials, we next define local weighted variable Sobolev spaces of fractional order. We show that Sobolev spaces obtained by weak derivatives and those by the Bessel potentials coincide. Finally, using duality, we define local weighted variable Sobolev spaces with negative order. We also show that local weighted variable Sobolev spaces are closed under complex interpolation. Some examples are given including the applications to weighted uniformly local Lebesgue spaces with variable exponents and periodic function spaces as a by-product, although the exponent is constant.
引用
收藏
页码:161 / 234
页数:73
相关论文
共 69 条
[1]  
Cowling M(1999)Riesz potentials and amalgams Ann. Inst. Fourier (Grenoble) 49 1345-1367
[2]  
Meda S(2011)The maximal operator on weighted variable Lebesgue spaces Fract. Calc. Appl. Anal. 14 361-374
[3]  
Pasquale R(2006)The boundedness of classical operators on variable Ann. Acad. Sci. Fenn. Math. 31 239-264
[4]  
Cruz-Uribe DV(2003) spaces Ann. Acad. Sci. Fenn. Math. 28 223-238
[5]  
Diening L(2012)The maximal function on variable J. Math. Anal. Appl. 394 744-760
[6]  
Hästö P(1988) spaces Commun. Pure Appl. Math. 41 909-996
[7]  
Cruz-Uribe DV(2004)Weighted norm inequalities for the maximal operator on variable Lebesgue spaces Math. Inequal. Appl. 7 245-253
[8]  
Fiorenza A(2009)Orthonormal basis of compactly supported wavelets J. Funct. Anal. 256 1731-1768
[9]  
Martell JM(1990)Maximal function on generalized Lebesgue spaces J. Funct. Anal. 93 34-170
[10]  
Pérez C(1985)Spaces of variable integrability and differentiability Bull . Am. Math. Soc. (N.S.) 13 1-21