Shear Piezoelectric and Dielectric Properties of LiNbO3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {LiNbO}}_{3}$$\end{document}, PMN-PT and PZT-5A at Low Temperatures

被引:0
作者
Md Shahidul Islam
John Beamish
机构
[1] University of Alberta,Department of Physics
关键词
Piezoelectric; Dielectric; Cryogenic; PMN-PT; PZT;
D O I
10.1007/s10909-018-2097-7
中图分类号
学科分类号
摘要
We have measured the low-temperature shear piezoelectric and dielectric constants of single-crystal lithium niobate (LiNbO3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {LiNbO}_{3}$$\end{document}) and lead magnesium niobate–lead titanate (PMN-PT), and of ceramic lead zirconium titanate (PZT-5A) transducers between room temperature and 78 mK. The piezoelectric and dielectric coefficients d15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{15}$$\end{document} and K15σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^{\sigma }_{15}$$\end{document} all decrease with temperature, although the total change in d15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{15}$$\end{document} is only about 7% for LiNbO3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {LiNbO}_3$$\end{document}. The values of d15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{15}$$\end{document} for PZT-5A and PMN-PT are much larger at room temperature but decrease much more rapidly, by factors of 4 for PZT-5A and 10 for PMN-PT. For LiNbO3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {LiNbO}_3$$\end{document}, d15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{15}$$\end{document} is constant below 50 K, but in both PZT-5A and PMN-PT d15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{15}$$\end{document} continues to decrease nearly linearly to the lowest temperatures. The behavior of the dielectric constant of each material mirrors that of d15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{15}$$\end{document}, reflecting their common ferroelectric origins. The piezoelectric voltage constants g15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{15}$$\end{document} are similar in the three materials and are only weakly temperature dependent. For actuator applications where large displacements are needed, PMN-PT and PZT-5A have much larger d15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{15}$$\end{document} values than LiNbO3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {LiNbO}_3$$\end{document}, but this advantage essentially disappears at low temperatures and LiNbO3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {LiNbO}_3$$\end{document} is a better choice in many applications. For sensor applications where g15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{15}$$\end{document} determines a transducer’s output voltage, the three materials have similar sensitivity for high-frequency applications like ultrasonics. At low frequencies, however, they are less sensitive as voltage sensors and the use of charge or current amplifiers is preferable.
引用
收藏
页码:285 / 301
页数:16
相关论文
共 64 条
[1]  
Loewy RG(1997)Recent developments in smart structures with aeronautical applications Smart Mater. Struct. 6 R11-R42
[2]  
Zhou Q(2014)Piezoelectric single crystal ultrasonic transducers for biomedical applications Prog. Mater. Sci. 66 87-111
[3]  
Lam KH(2007)Low-temperature shear modulus changes in solid Nature 450 853-856
[4]  
Zheng H(2013) and connection to supersolidity Phys. Rev. Lett. 110 035301-1242
[5]  
Qiu W(2011)Giant plasticity of a quantum crystal Phys. Rev. B 83 052503-436
[6]  
Shung KK(1984)Unaffected nonclassical response of solid Appl. Phys. Lett. 45 1240-722
[7]  
Day J(1986) under elastic modulus variation Cryogenics 26 435-972
[8]  
Beamish J(2011)Low-temperature vacuum tunneling microscopy Mater. Chem. Phys. 125 718-2230
[9]  
Haziot A(2007)Cryogenic piezoelectric displacement tester J. Appl. Phys. 101 064111-203
[10]  
Rojas X(1983)Cryogenic transverse and shear mode properties of (1–x)Pb( J. Mater. Sci. 18 968-996