Continuous approximations of Gol’dshtik’s model

被引:0
作者
D. K. Potapov
机构
[1] St. Petersburg State University,
来源
Mathematical Notes | 2010年 / 87卷
关键词
continuous approximation; nonlinear elliptic differential equation; boundaryvalue problem; Laplace operator; discontinuous nonlinearity; separated flow;
D O I
暂无
中图分类号
学科分类号
摘要
We consider continuous approximations to the Gol’dshtik problem for separated flows in an incompressible fluid. An approximated problem is obtained from the initial problem by small perturbations of the spectral parameter (vorticity) and by approximating the discontinuous nonlinearity continuously in the phase variable. Under certain conditions, using a variational method, we prove the convergence of solutions of the approximating problems to the solution of the original problem.
引用
收藏
页码:244 / 247
页数:3
相关论文
共 9 条
  • [1] Potapov D. K.(2005)Stability of basic boundary-value problems of elliptic type with a spectral parameter and discontinuous nonlinearity in the coercive case Izv. RAEN. Ser. MMMIU 9 159-165
  • [2] Potapov D. K.(2007)Approximation to the Dirichlet problem for a higher-order elliptic equation with a spectral parameter and a discontinuous nonlinearity Differentsial’nyeUravneniya 43 1002-1003
  • [3] Krasnosel’skii M. A.(1979)Equations with discontinuous nonlinearities Dokl. Akad. Nauk SSSR 248 1056-1059
  • [4] Pokrovskii A. V.(1962)A mathematical model of separated flows in an incompressible liquid Dokl. Akad. Nauk SSSR 147 1310-1313
  • [5] Gol’dshtik M. A.(2004)A mathematical model of separated flows of incompressible liquid Izv. RAEN. Ser.MMMIU 8 163-170
  • [6] Potapov D. K.(2008)On an upper bound for the value of the bifurcation parameter in eigenvalue problems for elliptic equations with discontinuous nonlinearities Differentsial’nye Uravneniya 44 715-716
  • [7] Potapov D. K.(2001)Existence of a ray of eigenvalues for equations with discontinuous operators Sibirsk. Mat. Zh. 42 911-919
  • [8] Pavlenko V. N.(undefined)undefined undefined undefined undefined-undefined
  • [9] Potapov D. K.(undefined)undefined undefined undefined undefined-undefined