Universal inequalities on complete noncompact smooth metric measure spaces

被引:0
作者
Yanli Li
Feng Du
机构
[1] Jingchu University of Technology,School of Electronic and Information Science
[2] Jingchu University of Technology,School of Mathematics and Physics
来源
Archiv der Mathematik | 2017年 / 109卷
关键词
Complete noncompact smooth metric measure space; Drifting Laplacian; Universal inequality; Sectional curvature; Weighted Ricci curvature; 35P15; 53C20; 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we obtain universal inequalities for the eigenvalues of the Dirichlet problem and clamped plate problem of drifting Laplacian on (n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+1$$\end{document})-dimensional (n≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 4$$\end{document}) complete noncompact simply connected smooth metric measure spaces which meet some conditions of the sectional curvature and radial weighted Ricci curvature.
引用
收藏
页码:591 / 598
页数:7
相关论文
共 40 条
[1]  
Chen D(2008)Extrinsic estimates for eigenvalues of the Laplace operator J. Math. Soc. Japan 60 325-339
[2]  
Cheng QM(2012)Eigenvalue estimates on domains in complete noncompact Riemannian manifolds Pacific J. Math. 255 41-54
[3]  
Chen D(2016)Estimates of the gaps between consecutive eigenvalues of Laplacian Pacific J. Math. 282 293-311
[4]  
Zheng T(2005)Estimates on eigenvalues of Laplacian Math. Ann. 331 445-660
[5]  
Lu M(2006)Inequalities for eigenvalues of a clamped plate problem Trans. Amer. Math. Soc. 262 663-675
[6]  
Chen D(2007)Bounds on eigenvalues of Dirichlet Laplacian Math. Ann. 337 159-175
[7]  
Zheng T(2017)Estimates for eigenvalues of a system of elliptic equations with drift and of bi-drifting Laplacian Comm. Pure Appl. Anal. 16 475-491
[8]  
Yang HC(2015)Universal inequalities of the poly-drifting Laplacian on the Gaussian and cylinder shrinking solitons Ann. Glob. Anal. Geom. 48 255-268
[9]  
Cheng QM(2016)Eigenvalue inequalities for the buckling problem of the drifting Laplacian on Ricci solitons J. Differential Equations 260 5533-5564
[10]  
Yang HC(2015)Estimates for eigenvalues of the bi-drifting Laplacian operator Z. Angew. Math. Phys. 66 703-726