Stability of Zero Solutions of Essentially Nonlinear One-Degree-of-Freedom Hamiltonian and Reversible Systems

被引:0
|
作者
Yu. N. Bibikov
机构
[1] St. Petersburg State University,
来源
Differential Equations | 2002年 / 38卷
关键词
Differential Equation; Partial Differential Equation; Ordinary Differential Equation; Functional Equation; Zero Solution;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:609 / 614
页数:5
相关论文
共 50 条
  • [1] Stability of zero solutions of essentially nonlinear one-degree-of-freedom Hamiltonian and reversible systems
    Bibikov, YN
    DIFFERENTIAL EQUATIONS, 2002, 38 (05) : 609 - 614
  • [2] Stability of a One-degree-of-freedom Canonical System in the Case of Zero Quadratic and Cubic Part of a Hamiltonian
    Boris S. Bardin
    Víctor Lanchares
    Regular and Chaotic Dynamics, 2020, 25 : 237 - 249
  • [3] Stability of a One-degree-of-freedom Canonical System in the Case of Zero Quadratic and Cubic Part of a Hamiltonian
    Bardin, Boris S.
    Lanchares, Victor
    REGULAR & CHAOTIC DYNAMICS, 2020, 25 (03): : 237 - 249
  • [4] System Identification of a Nonlinear One-Degree-of-Freedom Vibrating System
    Lok, Sefika Ipek
    Pappalardo, Carmine Maria
    La Regina, Rosario
    Malgaca, Levent
    NEW TECHNOLOGIES, DEVELOPMENT AND APPLICATION VI, VOL 1, 2023, 687 : 348 - 355
  • [5] On the Stability of Periodic Hamiltonian Systems with One Degree of Freedom in the Case of Degeneracy
    Bardin, Boris S.
    Lanchares, Victor
    REGULAR & CHAOTIC DYNAMICS, 2015, 20 (06): : 627 - 648
  • [6] On the stability of periodic Hamiltonian systems with one degree of freedom in the case of degeneracy
    Boris S. Bardin
    Victor Lanchares
    Regular and Chaotic Dynamics, 2015, 20 : 627 - 648
  • [7] Stability of Equilibrium Points for a Hamiltonian Systems with One Degree of Freedom in One Degenerate Case
    Rodrigo Gutierrez
    Claudio Vidal
    Regular and Chaotic Dynamics, 2017, 22 : 880 - 892
  • [8] Stability of Equilibrium Points for a Hamiltonian Systems with One Degree of Freedom in One Degenerate Case
    Gutierrez, Rodrigo
    Vidal, Claudio
    REGULAR & CHAOTIC DYNAMICS, 2017, 22 (07): : 880 - 892
  • [9] Modelling and controlling one-degree-of-freedom impacts
    Terza Universita di Roma, Roma, Italy
    IEE Proc Control Theory Appl, 1 (85-90):
  • [10] On the periodic motions of a one-degree-of-freedom oscillator
    Kooij R.
    Zegeling A.
    SeMA Journal, 2024, 81 (3) : 479 - 494