On the Attainability of the Best Constant in Fractional Hardy-Sobolev Inequalities Involving the Spectral Dirichlet Laplacian

被引:0
作者
N. S. Ustinov
机构
[1] St.-Petersburg State University,
来源
Functional Analysis and Its Applications | 2019年 / 53卷
关键词
fractional Laplacian; attainability of the best constant; Navier Laplacian; spectral Dirichlet Laplacian;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the attainability of the best constant in the fractional Hardy-Sobolev inequality with a boundary singularity for the spectral Dirichlet Laplacian. The main assumption is the average concavity of the boundary at the origin. A similar result has been proved earlier for the conventional Hardy-Sobolev inequality.
引用
收藏
页码:317 / 321
页数:4
相关论文
共 29 条
[1]  
Caffarelli L(2007)undefined Comm. Partial Differential Equations 32 1245-1260
[2]  
Silvestre L(2011)undefined Comm. Partial Differential Equations 36 1353-1384
[3]  
Capella A(2004)undefined J. Math. Anal. Appl. 295 225-236
[4]  
Dávila J(1992)undefined Trans. Amer. Math. Soc. 330 191-201
[5]  
Dupaigne L(2006)undefined Geom. Funct. Anal. 16 1201-1245
[6]  
Sire Y(1977)undefined Comm. Math. Phys. 53 285-294
[7]  
Cotsiolis A(1984)undefined Ann. Inst. H. Poincaré, Anal. Nonlin. 1 109-145
[8]  
Tavoularis N K(1985)undefined Rev. Mat. Iberoamericana 1 45-121
[9]  
Egnell H(2019)undefined Nonlin. Analysis, Theory Methods Appl. 178 32-40
[10]  
Ghoussoub N(2014)undefined Comm. Partial Differential Equations 39 1780-1790