On (p, q)-analogue of modified Bernstein–Schurer operators for functions of one and two variables

被引:0
|
作者
Qing-Bo Cai
机构
[1] Quanzhou Normal University,School of Mathematics and Computer Science
关键词
(; , ; )-Integers; Bernstein–Schurer operators; -statistical convergence; Rate of convergence; Lipschitz continuous functions; 41A10; 41A25; 41A36;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce a new kind of modified Bernstein–Schurer operators based on the concept of (p, q)-integers. We investigate statistical approximation properties, establish a local approximation theorem, give a convergence theorem for the Lipschitz continuous functions, we also obtain a Voronovskaja-type asymptotic formula. Next, we construct the bivariate operators and get some convergence properties. Finally, we give some graphs to illustrate the convergence properties of operators to some functions.
引用
收藏
页码:1 / 21
页数:20
相关论文
共 50 条
  • [31] TWO-DIMENSIONAL CHLODOWSKY VARIANT OF q-BERNSTEIN-SCHURER-STANCU OPERATORS
    Ozarslan, Mehmet Ali
    Vedi, Tuba
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 23 (03) : 446 - 461
  • [32] Approximation of Schurer type q-Bernstein-Kantorovich operators
    Ren, Mei-Ying
    Zeng, Xiao-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 12
  • [33] King type modification of q-Bernstein-Schurer operators
    Ren, Mei-Ying
    Zeng, Xiao-Ming
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2013, 63 (03) : 805 - 817
  • [34] Chlodowsky variant of q-Bernstein-Schurer-Stancu operators
    Tuba Vedi
    Mehmet Ali Özarslan
    Journal of Inequalities and Applications, 2014
  • [35] King type modification of q-Bernstein-Schurer operators
    Mei-Ying Ren
    Xiao-Ming Zeng
    Czechoslovak Mathematical Journal, 2013, 63 : 805 - 817
  • [36] Chlodowsky variant of q-Bernstein-Schurer-Stancu operators
    Vedi, Tuba
    Ozarslan, Mehmet Ali
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [37] Approximation of Schurer type q-Bernstein-Kantorovich operators
    Mei-Ying Ren
    Xiao-Ming Zeng
    Journal of Inequalities and Applications, 2015
  • [38] Approximation of functions by a new class of generalized Bernstein–Schurer operators
    Faruk Özger
    H. M. Srivastava
    S. A. Mohiuddine
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [39] Statistical Approximation by (p, q)-analogue of Bernstein-Stancu Operators
    Khan, A.
    Sharma, V
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2018, 8 (02): : 100 - 121
  • [40] Bernstein-Schurer-Kantorovich operators based on q-integers
    Agrawal, P. N.
    Finta, Zoltan
    Kumar, A. Sathish
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 : 222 - 231