On (p, q)-analogue of modified Bernstein–Schurer operators for functions of one and two variables

被引:0
|
作者
Qing-Bo Cai
机构
[1] Quanzhou Normal University,School of Mathematics and Computer Science
关键词
(; , ; )-Integers; Bernstein–Schurer operators; -statistical convergence; Rate of convergence; Lipschitz continuous functions; 41A10; 41A25; 41A36;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce a new kind of modified Bernstein–Schurer operators based on the concept of (p, q)-integers. We investigate statistical approximation properties, establish a local approximation theorem, give a convergence theorem for the Lipschitz continuous functions, we also obtain a Voronovskaja-type asymptotic formula. Next, we construct the bivariate operators and get some convergence properties. Finally, we give some graphs to illustrate the convergence properties of operators to some functions.
引用
收藏
页码:1 / 21
页数:20
相关论文
共 50 条
  • [1] On (p, q)-analogue of modified Bernstein-Schurer operators for functions of one and two variables
    Cai, Qing-Bo
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2017, 54 (1-2) : 1 - 21
  • [2] q-Bernstein-Schurer-Durrmeyer type operators for functions of one and two variables
    Kajla, Arun
    Ispir, Nurhayat
    Agrawal, P. N.
    Goyal, Meenu
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 275 : 372 - 385
  • [3] Modified Bernstein–Kantorovich operators for functions of one and two variables
    Kajla A.
    Goyal M.
    Rendiconti del Circolo Matematico di Palermo Series 2, 2018, 67 (2): : 379 - 395
  • [4] On (p, q)-analogue of Kantorovich type Bernstein-Stancu-Schurer operators
    Cai, Qing-Bo
    Zhou, Guorong
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 276 : 12 - 20
  • [5] Modified (p,q)-Bernstein-Schurer operators and their approximation properties
    Mursaleen, M.
    Al-Abied, A.
    Nasiruzzaman, Md.
    COGENT MATHEMATICS, 2016, 3
  • [6] On q-analogue of Bernstein-Schurer-Stancu operators
    Agrawal, P. N.
    Gupta, Vijay
    Kumar, A. Sathish
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (14) : 7754 - 7764
  • [7] Modified ρ-Bernstein Operators for Functions of Two Variables
    Agrawal, P. N.
    Kajla, Arun
    Kumar, Dharmendra
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (09) : 1073 - 1095
  • [8] Bivariate Bernstein-Schurer-Stancu type GBS operators in (p,q)-analogue
    Mursaleen, M.
    Ahasan, Mohd.
    Ansari, K. J.
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01):
  • [9] King Type (p, q)-Bernstein Schurer Operators
    Bawa, Parveen
    Bhardwaj, Neha
    Bhatia, Sumit Kaur
    THAI JOURNAL OF MATHEMATICS, 2023, 21 (03): : 431 - 443
  • [10] Security of image transfer and innovative results for (p,q)-Bernstein-Schurer p,q )-Bernstein-Schurer operators
    Bilgin, Nazmiye Gonul
    Kaya, Yusuf
    Eren, Melis
    AIMS MATHEMATICS, 2024, 9 (09): : 23812 - 23836