Non-relativistic ten-dimensional minimal supergravity

被引:0
作者
E. A. Bergshoeff
J. Lahnsteiner
L. Romano
J. Rosseel
C. Şimşek
机构
[1] University of Groningen,Van Swinderen Institute
[2] University of Vienna,Faculty of Physics
来源
Journal of High Energy Physics | / 2021卷
关键词
Supergravity Models; Classical Theories of Gravity; Superstrings and Heterotic Strings;
D O I
暂无
中图分类号
学科分类号
摘要
We construct a non-relativistic limit of ten-dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 supergravity from the point of view of the symmetries, the action, and the equations of motion. This limit can only be realized in a supersymmetric way provided we impose by hand a set of geometric constraints, invariant under all the symmetries of the non-relativistic theory, that define a so-called ‘self-dual’ Dilatation-invariant String Newton-Cartan geometry. The non-relativistic action exhibits three emerging symmetries: one local scale symmetry and two local conformal supersymmetries. Due to these emerging symmetries the Poisson equation for the Newton potential and two partner fermionic equations do not follow from a variation of the non-relativistic action but, instead, are obtained by a supersymmetry variation of the other equations of motion that do follow from a variation of the non-relativistic action. We shortly discuss the inclusion of the Yang-Mills sector that would lead to a non-relativistic heterotic supergravity action.
引用
收藏
相关论文
共 103 条
  • [1] Gomis J(2001) × J. Math. Phys. 42 3127-undefined
  • [2] Ooguri H(2000)( JHEP 10 020-undefined
  • [3] Danielsson UH(2005)) JHEP 12 024-undefined
  • [4] Guijosa A(2018) (2 JHEP 11 133-undefined
  • [5] Kruczenski M(2021) 0) JHEP 06 021-undefined
  • [6] Gomis J(2018)undefined JHEP 11 190-undefined
  • [7] Gomis J(2019)undefined JHEP 11 071-undefined
  • [8] Kamimura K(2019)undefined JHEP 10 101-undefined
  • [9] Bergshoeff E(2020)undefined JHEP 03 181-undefined
  • [10] Gomis J(2021)undefined JHEP 03 269-undefined