We construct a non-relativistic limit of ten-dimensional N\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathcal{N} $$\end{document} = 1 supergravity from the point of view of the symmetries, the action, and the equations of motion. This limit can only be realized in a supersymmetric way provided we impose by hand a set of geometric constraints, invariant under all the symmetries of the non-relativistic theory, that define a so-called ‘self-dual’ Dilatation-invariant String Newton-Cartan geometry. The non-relativistic action exhibits three emerging symmetries: one local scale symmetry and two local conformal supersymmetries. Due to these emerging symmetries the Poisson equation for the Newton potential and two partner fermionic equations do not follow from a variation of the non-relativistic action but, instead, are obtained by a supersymmetry variation of the other equations of motion that do follow from a variation of the non-relativistic action. We shortly discuss the inclusion of the Yang-Mills sector that would lead to a non-relativistic heterotic supergravity action.