Bifurcation analysis in a delayed Lokta–Volterra predator–prey model with two delays

被引:1
作者
Changjin Xu
Xianhua Tang
Maoxin Liao
Xiaofei He
机构
[1] Guizhou College of Finance and Economics,Guizhou Key Laboratory of Economics System Simulation
[2] Hunan Institute of Engineering,Faculty of Science
[3] Central South University,School of Mathematical Science and Computing Technology
[4] Nanhua University,School of Mathematics and Physics
[5] Jishou University,Zhangjiajie College
来源
Nonlinear Dynamics | 2011年 / 66卷
关键词
Predator–prey model; Delay; Stability; Hopf bifurcation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a class of delayed Lokta–Volterra predator–prey model with two delays is considered. By analyzing the associated characteristic transcendental equation, its linear stability is investigated and Hopf bifurcation is demonstrated. Some explicit formulae for determining the stability and the direction of the Hopf bifurcation periodic solutions bifurcating from Hopf bifurcations are obtained by using normal form theory and center manifold theory. Some numerical simulations for supporting the theoretical results are also provided. Finally, main conclusions are given.
引用
收藏
页码:169 / 183
页数:14
相关论文
共 50 条
  • [41] HOPF BIFURCATION AND CONTROL FOR THE DELAYED PREDATOR-PREY MODEL WITH NONLINEAR PREY HARVESTING
    Zhang, Guodong
    Guo, Huangyu
    Han, Jing
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (05): : 2954 - 2976
  • [42] Hopf bifurcation analysis in a Monod-Haldane predator-prey model with delays and diffusion
    Zhang, Li-Yuan
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (3-4) : 1369 - 1382
  • [43] Bifurcation and chaos of a delayed predator-prey model with dormancy of predators
    Jingnan Wang
    Weihua Jiang
    Nonlinear Dynamics, 2012, 69 : 1541 - 1558
  • [44] Hopf bifurcation of a delayed diffusive predator-prey model with strong Allee effect
    Jia Liu
    Xuebing Zhang
    Advances in Difference Equations, 2017
  • [45] ON HOPF BIFURCATION OF A DELAYED PREDATOR-PREY SYSTEM WITH DIFFUSION
    Liu, Jianxin
    Wei, Junjie
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (02):
  • [46] Stability analysis of a two-patch predator–prey model with two dispersal delays
    Guowei Sun
    Ali Mai
    Advances in Difference Equations, 2018
  • [47] Hopf bifurcation analysis for a ratio-dependent predator-prey system with two delays and stage structure for the predator
    Deng, Lianwang
    Wang, Xuedi
    Peng, Miao
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 231 : 214 - 230
  • [48] Bifurcation and chaos of a delayed predator-prey model with dormancy of predators
    Wang, Jingnan
    Jiang, Weihua
    NONLINEAR DYNAMICS, 2012, 69 (04) : 1541 - 1558
  • [49] Stability Analysis and Hopf Bifurcation of a Delayed Diffusive Predator-Prey Model with a Strong Allee Effect on the Prey and the Effect of Fear on the Predator
    Xie, Yining
    Zhao, Jing
    Yang, Ruizhi
    MATHEMATICS, 2023, 11 (09)
  • [50] Hopf bifurcation of a delayed diffusive predator-prey model with strong Allee effect
    Liu, Jia
    Zhang, Xuebing
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,