Existence of the nonoscillatory solutions of higher order neutral dynamic equations on time scales

被引:0
|
作者
Chunyan Tao
Taixiang Sun
Hongjian Xi
机构
[1] Guangxi Colleges and Universities Key Laboratory of Mathematics and Its Applications,College of Information and Statistics
[2] Guangxi University of Finance and Economics,undefined
来源
Advances in Difference Equations | / 2015卷
关键词
nonoscillatory solution; dynamic equation; time scale; 34K11; 39A10; 39A99;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the existence of the nonoscillatory solutions of the following higher order neutral dynamic equation: {rn(t)[(rn−1(t)(⋯(r1(t)(x(t)−q(t)x(τ(t)))Δ)Δ⋯)Δ)Δ]γ}Δ+f(t,x(δ(t)))=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{r_{n}(t)[(r_{n-1}(t)(\cdots(r_{1}(t)(x(t)-q(t)x(\tau(t)))^{\Delta })^{\Delta}\cdots)^{\Delta})^{\Delta}]^{\gamma}\}^{\Delta} +f(t,x(\delta (t)))=0$\end{document} for t∈[t0,∞)T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\in \left .[t_{0},\infty) \right ._{\mathbb{T}}$\end{document}, and obtain some necessary and sufficient conditions for the existence of nonoscillatory bounded solutions for this equation.
引用
收藏
相关论文
共 50 条
  • [1] Existence of nonoscillatory solutions for higher order neutral dynamic equations on time scales
    Zhang Z.
    Dong W.
    Li Q.
    Liang H.
    Journal of Applied Mathematics and Computing, 2008, 28 (1-2) : 29 - 38
  • [2] Existence of the nonoscillatory solutions of higher order neutral dynamic equations on time scales
    Tao, Chunyan
    Sun, Taixiang
    Xi, Hongjian
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [3] Existence of Nonoscillatory Solutions to Higher-Order Nonlinear Neutral Dynamic Equations on Time Scales
    Qiu, Yang-Cong
    Wang, Qi-Ru
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (04) : 1935 - 1952
  • [4] Existence of Nonoscillatory Solutions to Higher-Order Nonlinear Neutral Dynamic Equations on Time Scales
    Yang-Cong Qiu
    Qi-Ru Wang
    Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 1935 - 1952
  • [5] Existence of nonoscillatory solutions to neutral dynamic equations on time scales
    Zhu, Zhi-Qiang
    Wang, Qi-Ru
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (02) : 751 - 762
  • [6] Nonoscillatory Solutions for Higher-Order Neutral Dynamic Equations on Time Scales
    Sun, Taixiang
    Xi, Hongjian
    Peng, Xiaofeng
    Yu, Weiyong
    ABSTRACT AND APPLIED ANALYSIS, 2010,
  • [7] Existence of Nonoscillatory Solutions to Second-Order Neutral Delay Dynamic Equations on Time Scales
    Li, Tongxing
    Han, Zhenlai
    Sun, Shurong
    Yang, Dianwu
    ADVANCES IN DIFFERENCE EQUATIONS, 2009,
  • [8] Existence of Nonoscillatory Solutions to Second-Order Neutral Delay Dynamic Equations on Time Scales
    Tongxing Li
    Zhenlai Han
    Shurong Sun
    Dianwu Yang
    Advances in Difference Equations, 2009
  • [9] EXISTENCE OF NONOSCILLATORY SOLUTIONS TO SECOND-ORDER NONLINEAR NEUTRAL DYNAMIC EQUATIONS ON TIME SCALES
    Gao, Jin
    Wang, Qiru
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2013, 43 (05) : 1521 - 1535
  • [10] Existence of nonoscillatory solutions to nonlinear third-order neutral dynamic equations on time scales
    Qiu, Yang-Cong
    Zada, Akbar
    Tang, Shuhong
    Li, Tongxing
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (08): : 4352 - 4363