Diameter and Broadcast Time of Random Geometric Graphs in Arbitrary Dimensions

被引:0
作者
Tobias Friedrich
Thomas Sauerwald
Alexandre Stauffer
机构
[1] Friedrich-Schiller-Universität Jena,
[2] Max-Planck-Institut für Informatik,undefined
[3] Microsoft Research,undefined
来源
Algorithmica | 2013年 / 67卷
关键词
Random geometric graphs; Diameter; Randomized rumor spreading;
D O I
暂无
中图分类号
学科分类号
摘要
A random geometric graph (RGG) is defined by placing n points uniformly at random in [0,n1/d]d, and joining two points by an edge whenever their Euclidean distance is at most some fixed r. We assume that r is larger than the critical value for the emergence of a connected component with Ω(n) nodes. We show that, with high probability (w.h.p.), for any two connected nodes with a Euclidean distance of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega (\frac{\log n}{r^{d-1}} )$\end{document}, their graph distance is only a constant factor larger than their Euclidean distance. This implies that the diameter of the largest connected component is Θ(n1/d/r) w.h.p. We also prove that the condition on the Euclidean distance above is essentially tight.
引用
收藏
页码:65 / 88
页数:23
相关论文
共 42 条
  • [1] Akyildiz I.(2005)Underwater acoustic sensor networks: research challenges Ad Hoc Netw. 3 257-279
  • [2] Pompili D.(1996)On the chemical distance for supercritical Bernoulli percolation Ann. Probab. 24 1036-1048
  • [3] Melodia T.(2007)On the cover time and mixing time of random geometric graphs Theor. Comput. Sci. 380 2-22
  • [4] Antal P.(2008)The cover time of the giant component of a random graph Random Struct. Algorithms 32 401-439
  • [5] Pisztora A.(1996)Surface order large deviations for high-density percolation Probab. Theory Relat. Fields 104 467-482
  • [6] Avin C.(2007)Random geometric graph diameter in the unit ball Algorithmica 47 421-438
  • [7] Ercal G.(2009)On the runtime and robustness of randomized broadcasting Theor. Comput. Sci. 410 3414-3427
  • [8] Cooper C.(1990)Randomized broadcast in networks Random Struct. Algorithms 1 447-460
  • [9] Frieze A.(1993)First passage percolation for random colorings of ℤ Ann. Appl. Probab. 3 746-762
  • [10] Deuschel J.-D.(1985)The shortest-path problem for graphs with random arc-lengths Discrete Appl. Math. 10 57-77