Periodic solutions for a kind of prescribed mean curvature Liénard equation with a singularity and a deviating argument

被引:0
|
作者
Shiping Lu
Fanchao Kong
机构
[1] Nanjing University of Information Science and Technology,College of Mathematics and Statistics
[2] Anhui Normal University,Department of Mathematics
来源
Advances in Difference Equations | / 2015卷
关键词
periodic solution; continuation theorem; prescribed mean curvature Liénard equation; deviating argument; singularity;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the existence of periodic solutions to the following prescribed mean curvature Liénard equation with a singularity and a deviating argument: (u′(t)1+(u′(t))2)′+f(u(t))u′(t)+g(u(t−σ))=e(t),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\biggl(\frac{u'(t)}{\sqrt{1+(u'(t))^{2}}}\biggr)'+f\bigl(u(t)\bigr)u'(t)+g \bigl( u(t-\sigma)\bigr)=e(t), $$\end{document} where g has a strong singularity at x=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x=0$\end{document} and satisfies a small force condition at x=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x=\infty$\end{document}. By applying Mawhin’s continuation theorem, we prove that the given equation has at least one positive T-periodic solution. We will also give an example to illustrate the application of our main results.
引用
收藏
相关论文
共 50 条