Tetrad formalism and reference frames in general relativity

被引:0
作者
A. F. Zakharov
V. A. Zinchuk
V. N. Pervushin
机构
[1] Chinese Academy of Sciences,National Astronomical Observatories
[2] Institute of Theoretical and Experimental Physics,Astro Space Center
[3] Lebedev Physical Institute,Bogoliubov Laboratory of Theoretical Physics
[4] Joint Institute for Nuclear Research,undefined
来源
Physics of Particles and Nuclei | 2006年 / 37卷
关键词
Anisotropy; General Relativity; Perturbation Theory; Reference Frame; Expansion Coefficient;
D O I
暂无
中图分类号
学科分类号
摘要
This review is devoted to problems of defining the reference frames in the tetrad formalism of General Relativity. Tetrads are the expansion coefficients of components of an orthogonal basis over the differentials of a coordinate space. The Hamiltonian cosmological perturbation theory is presented in terms of these invariant differential forms. This theory does not contain the double counting of the spatial metric determinant in contrast to the conventional Lifshits-Bardeen perturbation theory. We explicitly write out the Lorentz transformations of the orthogonal-basis components from the cosmic microwave background (CMB) reference frame to the laboratory frame, moving with a constant velocity relative to the CMB frame. Possible observational consequences of the Hamiltonian cosmological perturbation theory are discussed, in particular, the quantum anomaly of geometric interval and the shift of the origin, as a source of the CMB anisotropy, in the course of the universe evolution.
引用
收藏
页码:104 / 134
页数:30
相关论文
共 77 条
[1]  
Einstein A.(1915)undefined Sitzungsber. K. Preuss. Akad. Wiss. B 44 778-undefined
[2]  
Einstein A.(1914)undefined Vossissche Zeitung 26 33-undefined
[3]  
Weyl H.(1929)undefined Z. Phys. 56 330-undefined
[4]  
Fock V.(1926)undefined Z. Phys. 39 226-undefined
[5]  
Yang C. N.(1954)undefined Phys. Rev. 96 191-undefined
[6]  
Mills R. L.(1980)undefined Usp. Fiz. Nauk 132 169-undefined
[7]  
Yang I.(1956)undefined Phys. Rev. 101 1597-undefined
[8]  
Utiyama R.(1961)undefined J. Math. Phys. 2 212-undefined
[9]  
Kibble T. W. B.(1927)undefined Proc. R. Soc. London, Ser. A 114 243-undefined
[10]  
Dirac P.(2003)undefined Phys. Part. Nucl. 34 377-undefined