A note on 3D \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 2 dualities: real mass flow and partition function

被引:0
作者
A. Amariti
机构
[1] Laboratoire de Physique Théorique de l’ École Normale Supérieure and Istitute de Physique Théorique Philippe Meyer,
关键词
Supersymmetry and Duality; Chern-Simons Theories; Solitons Monopoles and Instantons;
D O I
10.1007/JHEP03(2014)064
中图分类号
学科分类号
摘要
We study two well-known classes of dualities in three dimensional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 2 supersymmetric field theories. In the first class there are non trivial interactions involving monopole operators while in the second class the dual gauge theories have Chern-Simons terms in the action. An RG flows connecting the first dual pair to the second one has been studied in the past and tested on the partition function on the squashed three sphere. Recently an opposite RG flow connecting the second dual pair to the first one has been studied in the case of unitary gauge groups. In this paper we study this flow on the partition function on the squashed three sphere. We verify that the equality between the partition functions of the original dual models is preserved in the IR, where the other dual pair is reached. We generalize the analysis to the case of symplectic and of orthogonal groups.
引用
收藏
相关论文
共 73 条
[1]  
Montonen C(1977)Magnetic Monopoles as Gauge Particles? Phys. Lett. B 72 117-undefined
[2]  
Olive DI(1994)Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory Nucl. Phys. B 426 19-undefined
[3]  
Seiberg N(1995)Electric-magnetic duality in supersymmetric nonAbelian gauge theories Nucl. Phys. B 435 129-undefined
[4]  
Witten E(1996)Mirror symmetry in three-dimensional gauge theories Phys. Lett. B 387 513-undefined
[5]  
Seiberg N(1997)IR duality in D = 3 N = 2 supersymmetric USp(2N (c)) and U(N (c)) gauge theories Phys. Lett. B 404 71-undefined
[6]  
Intriligator KA(2009)Seiberg Duality in Chern-Simons Theory Nucl. Phys. B 812 1-undefined
[7]  
Seiberg N(2011)Comments on 3d Seiberg-like dualities JHEP 10 075-undefined
[8]  
Aharony O(2013)Aspects of 3d N = 2 Chern-Simons-Matter theories JHEP 07 079-undefined
[9]  
Giveon A(2013)Flows between Dualities for 3d Chern-Simons Theories Phys. Rev. D 88 066011-undefined
[10]  
Kutasov D(1997)Aspects of N = 2 supersymmetric gauge theories in three-dimensions Nucl. Phys. B 499 67-undefined