Strong convergence theorems for finite families of pseudomonotone equilibrium and fixed point problems in Banach spaces

被引:0
|
作者
T. O. Alakoya
L. O. Jolaoso
O. T. Mewomo
机构
[1] University of KwaZulu-Natal,School of Mathematics, Statistics and Computer Science
来源
Afrika Matematika | 2021年 / 32卷
关键词
Pseudomonotone; Bifunction; Equilibrium problem; Fixed point problem; Quasi-; -nonexpansive mapping; Linesearch technique; 65K15; 47J25; 65J15; 90C33;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we introduce a new linesearch technique with Halpern iteration for finding a common solution of finite families of pseudomonotone equilibrium problems and fixed point of finite family of quasi-ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}-nonexpansive mappings in Banach spaces. Under standard assumptions imposed on the equilibrium bifunctions and the quasi-ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}-nonexpansive mappings, we proved that the sequence generated by our algorithm converges strongly to the unique solution of the equilibrium and fixed point problems. Numerical example is presented to illustrate the efficiency and accuracy of the proposed algorithm. Our results improve and extend many existing results in the literature in this direction.
引用
收藏
页码:897 / 923
页数:26
相关论文
共 50 条