An existence result for Schrödinger equations with magnetic fields and exponential critical growth

被引:10
作者
Barile S. [1 ]
Figueiredo G.M. [2 ]
机构
[1] Dipartimento di Matematica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, Bari
[2] Universidade de Brasilia-UNB Departamento de Matemática, Campus Universitário Darcy Ribeiro, Brasilia, CEP 70.910-900, DF
关键词
Compactness lemma; Magnetic Schrödinger equations; Critical exponential nonlinearity; Minimization problem; Trudinger-Moser inequality;
D O I
10.1007/s41808-017-0007-9
中图分类号
学科分类号
摘要
We show the existence of a complex solution to the following magnetic Schrödinger equation -(∇+iA(x))2u+u=f(|u|2)uinR2where A: R2→ R2 is a suitable magnetic potential and f satisfies exponential critical growth assumptions at infinity. We exploit some recent results established by means of a Trudinger-Moser inequality to the corresponding real equation in absence of the magnetic field (i.e., A(x) = 0). © 2017, Orthogonal Publishing and Springer International Publishing AG, part of Springer Nature.
引用
收藏
页码:105 / 125
页数:20
相关论文
共 22 条
  • [1] Alves C.O., Figueiredo G.M., Multiple solutions for a semilinear elliptic equation with critical growth and magnetic field, Milan J. Math., 82, 2, pp. 389-405, (2014)
  • [2] Alves C.O., Miyagaki O., Do O.J.M., Nonlinear perturbations of a periodic elliptic problems in R 2 involving critical growth, Nonlin. Anal, 56, pp. 781-791, (2004)
  • [3] Alves C.O., Montenegro M., Souto M.A.S., Existence of a ground state solution for a nonlinear scalar field equation with critical growth, Calc. Var., 43, pp. 537-554, (2012)
  • [4] Alves C.O., Souto M.A.S., Multiplicity of positive solutions for a class of problems with exponential critical growth in R<sup>2</sup> , J. Differ. Equ., 244, 6, pp. 1502-1520, (2008)
  • [5] Arioli G., Szulkin A., A semilinear Schrödinger equations in the presence of a magnetic field, Arch. Ration. Mech. Anal., 170, pp. 277-295, (2003)
  • [6] Barile S., Cingolani S., Secchi S., Single-peaks for a magnetic Schrödinger equation with critical growth, Adv. Differ. Equ., 11, 10, pp. 1135-1166, (2006)
  • [7] Barile S., Figueiredo G.M., A nontrivial complex solution for magnetic Schrödinger equations with critical nonlinearities
  • [8] Berestycki H., Gallouet T., Kavian O., Equations de Champs scalaires euclidiens non linéaires dans le plan, C. R. Acad. Sci. Paris Ser. I Math., 297, pp. 307-310, (1984)
  • [9] Berestycki H., Lions P.L., Nonlinear scalar field equations I and II, Arch. Rat. Mech. Anal., 82, pp. 313-375, (1983)
  • [10] Cao D.M., Nonlinear solutions of semilinear elliptic equations with critical exponent in R<sup>2</sup> , Comm. Part. Diff. Equ., 17, pp. 407-435, (1992)