Crank-Nicolson-weighted-shifted-Grünwald-difference schemes for space Riesz variable-order fractional diffusion equations

被引:0
|
作者
Fu-Rong Lin
Qiu-Ya Wang
Xiao-Qing Jin
机构
[1] Shantou University,Department of Mathematics
[2] University of Macau,Department of Mathematics
来源
Numerical Algorithms | 2021年 / 87卷
关键词
Variable-order fractional derivative; CN-WSGD scheme; Accuracy; Stability; MSC 65M06; MSC 26A33; MSC 65M12;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, high-order finite difference methods are proposed to solve the initial-boundary value problem for space Riesz variable-order fractional diffusion equations. Based on weighted-shifted-Grünwald-difference (WSGD) operators proposed in Lin and Liu (J. Comput. Appl. Math. 363, 77–91 (2020)) for Riemann-Liouville fractional derivatives, we derive WSGD operators for variable-order ones by using the relation between variable-order fractional derivative and (constant-order) fractional derivative. We then apply Crank-Nicolson-weighted-shifted-Grünwald-difference (CN-WSGD) schemes to the initial-boundary problem for space Riesz variable-order diffusion equations. Theoretical results on the stability and convergence of CN-WSGD schemes are presented and proved. Moreover, we derive a problem-based method to choose suitable CN-WSGD schemes, which leads to unconditioned stable linear systems with optimal upper bound for accuracy. Numerical results show that the proposed schemes are very efficient.
引用
收藏
页码:601 / 631
页数:30
相关论文
共 50 条
  • [1] Crank-Nicolson-weighted-shifted-Grunwald-difference schemes for space Riesz variable-order fractional diffusion equations
    Lin, Fu-Rong
    Wang, Qiu-Ya
    Jin, Xiao-Qing
    NUMERICAL ALGORITHMS, 2021, 87 (02) : 601 - 631
  • [2] Fractional centered difference schemes and banded preconditioners for nonlinear Riesz space variable-order fractional diffusion equations
    Wang, Qiu-Ya
    She, Zi-Hang
    Lao, Cheng-Xue
    Lin, Fu-Rong
    NUMERICAL ALGORITHMS, 2024, 95 (02) : 859 - 895
  • [3] Fractional centered difference schemes and banded preconditioners for nonlinear Riesz space variable-order fractional diffusion equations
    Qiu-Ya Wang
    Zi-Hang She
    Cheng-Xue Lao
    Fu-Rong Lin
    Numerical Algorithms, 2024, 95 : 859 - 895
  • [4] FINITE DIFFERENCE SCHEMES FOR VARIABLE-ORDER TIME FRACTIONAL DIFFUSION EQUATION
    Sun, Hongguang
    Chen, Wen
    Li, Changpin
    Chen, Yangquan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (04):
  • [5] Crank-Nicolson difference scheme for the coupled nonlinear Schrodinger equations with the Riesz space fractional derivative
    Wang, Dongling
    Xiao, Aiguo
    Yang, Wei
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 242 : 670 - 681
  • [6] Variable-order space-fractional diffusion equations and a variable-order modification of constant-order fractional problems
    Zheng, Xiangcheng
    Wang, Hong
    APPLICABLE ANALYSIS, 2022, 101 (06) : 1848 - 1870
  • [7] A fast method for variable-order space-fractional diffusion equations
    Jia, Jinhong
    Zheng, Xiangcheng
    Fu, Hongfei
    Dai, Pingfei
    Wang, Hong
    NUMERICAL ALGORITHMS, 2020, 85 (04) : 1519 - 1540
  • [8] A fast method for variable-order space-fractional diffusion equations
    Jinhong Jia
    Xiangcheng Zheng
    Hongfei Fu
    Pingfei Dai
    Hong Wang
    Numerical Algorithms, 2020, 85 : 1519 - 1540
  • [9] HIGH ORDER COMPACT CRANK-NICOLSON DIFFERENCE SCHEME FOR A CLASS OF SPACE FRACTIONAL DIFFERENTIAL EQUATIONS
    Feng, Qinghua
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2017, 79 (03): : 73 - 84
  • [10] Temporal second order difference schemes for the multi-dimensional variable-order time fractional sub-diffusion equations
    Du, Ruilian
    Alikhanov, Anatoly A.
    Sun, Zhi-Zhong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (10) : 2952 - 2972