Long Range Order for Lattice Dipoles

被引:0
作者
Alessandro Giuliani
机构
[1] Università di Roma Tre,Dipartimento di Matematica
来源
Journal of Statistical Physics | 2009年 / 134卷
关键词
(; ) spins; Dipole interactions; Reflection positivity; Infrared bounds; Long range order;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a system of classical Heisenberg spins on a cubic lattice in dimensions three or more, interacting via the dipole-dipole interaction. We prove that at low enough temperature the system displays orientational long range order, as expected by spin wave theory. The proof is based on reflection positivity methods. In particular, we demonstrate a previously unproven conjecture on the dispersion relation of the spin waves, first proposed by Fröhlich and Spencer, which allows one to apply infrared bounds for estimating the long distance behavior of the spin-spin correlation functions.
引用
收藏
页码:1059 / 1070
页数:11
相关论文
共 40 条
[1]  
Benfatto G.(1986)The dipole phase in the two-dimensional hierarchical Coulomb gas: analyticity and correlations decay Commun. Math. Phys. 106 277-288
[2]  
Gallavotti G.(1989)On the analyticity of the pressure in the hierarchical dipole gas J. Stat. Phys. 55 739-744
[3]  
Nicoló F.(1999)Coulomb systems at low density: a review J. Stat. Phys. 96 1163-1330
[4]  
Benfatto G.(1990)Grad Commun. Math. Phys. 129 351-392
[5]  
Gallavotti G.(2000) perturbations of massless Gaussian fields Phys. Rev. B 62 1015-266
[6]  
Nicoló F.(1997)Dipolar interaction and long-range order in the square planar rotator model Phys. Rev. B 55 15108-701
[7]  
Brydges D.C.(2000)Dipolar-induced planar anisotropy in ultrathin magnetic films Rev. Mod. Phys. 72 225-95
[8]  
Martin A.Ph.(1978)Dipolar effects in magnetic thin films and quasi-two-dimensional systems Commun. Math. Phys. 62 1-243
[9]  
Brydges D.C.(1978)Phase transitions and reflection positivity. I. General theory and long range lattice models Commun. Math. Phys. 59 235-84
[10]  
Yau H.(1981)Correlation inequalities and the thermodynamic limit for classical and quantum continuous systems J. Stat. Phys. 24 617-167