Targeted synthesis of a copper catalyst with a nanostructured active component

被引:3
作者
Vanchurin V.I. [1 ]
Pavlov Y.L. [1 ]
Petrov A.Y. [1 ]
Marachuk L.I. [2 ]
Karachenko O.I. [2 ]
Dul’nev A.V. [3 ]
Rudnik L.D. [4 ]
机构
[1] Mendeleev University of Chemical Technology, Moscow
[2] OAO Grodno Azot, Grodno
[3] OOO NIAP KATALIZATOR, Novomoskovsk, Tula oblast
[4] OAO Plazmatekh, Novomoskovsk, Tula oblast
关键词
ammonia carbonate technology; copper-containing catalyst; hydroxocarbonate structures; thermal stability;
D O I
10.1134/S2070050416030132
中图分类号
学科分类号
摘要
The effect of the hydrodynamic regime in the stirring of a copper carbonate–ammonia suspension containing an alumina–silica support on the chemical and phase composition of an active component (AC) precursor for a catalyst of cyclohexanol dehydrogenation to cyclohexanone is studied. By means of X-ray diffraction, differential thermal analysis, and adsorption, the precursor is found to precipitate in a developed turbulent regime, predominantly in the form of nanostructured hydroxocarbonate structures strongly bonded to the support. Some catalytic and textural properties of CAS-C (copper–alumina–silica for caprolactam) samples are studied with AC contents of 20 to 30 wt % (on a copper oxide basis). The laboratory technology is scaled up to industrial conditions. CAS-C samples and commercial H3-11 catalyst (BASF) are subjected to catalytic tests (in a flow-type reactor with a fixed catalyst bed 40 cm3 in volume at a temperature of 250°C and atmospheric pressure). The CAS-C catalyst is shown to be similar to the H3-11 catalyst in terms of selectivity, and to considerably surpass it in activity and thermal stability. © 2016, Pleiades Publishing, Ltd.
引用
收藏
页码:257 / 264
页数:7
相关论文
共 11 条
[1]  
Vanchurin V.I., Kostyuchenko V.V., Dzhumamukhamedov D.S., Polovinkin M.A., Pavlov Y.L., Marachuk L.I., Khim. Tekhnol., 15, 5, pp. 283-288, (2014)
[2]  
Vanchurin V.I., Dzhumamukhamedov D.S., Popova N.A., Glass Ceram., 71, 11, pp. 405-409, (2015)
[3]  
Aksenov N.N., Tarasova T.V., Kostrov V.V., Trudy GIAP, pp. 31-40, (1990)
[4]  
Komova Z.V., Zrelova I.P., Veinbender A.Y., Shkitina V.I., Krendel' A.I., Sharkina V.I., Boevskaya E.A., Katal. Prom-sti, 5, pp. 43-51, (2007)
[5]  
Shchankina V.G., Sharkina V.I., Boevskaya E.A., Mel'nikova T.I., Seregina L.K., Men'shikov V.V., Vestn. MITKHT, 8, 2, pp. 79-86, (2013)
[6]  
Pakhomov N.A., Promyshlennyi kataliz v lektsiyakh, 1, (2005)
[7]  
Chukin G.D., Stroenie oksida alyuminiya i katalizatorov gidroobesserivaniya. Mekhanizmy reaktsii, (2010)
[8]  
Jeon G.S., Seo G., Chung J.S., Korean J. Chem. Eng, 13, 4, pp. 412-414, (1996)
[9]  
Bai G., Wang H., Ning H., He F., Chen G., React. Kinet. Catal. Lett., 94, 2, pp. 375-383, (2008)
[10]  
Bai G., Fan X., Wang H., He F., Ning H., React. Kinet. Catal. Lett., 98, 2, pp. 341-348, (2009)