Advanced magnetic resonance imaging techniques to better understand multiple sclerosis

被引:2
作者
Zaaraoui W. [1 ]
Audoin B. [1 ,2 ]
Pelletier J. [1 ,2 ]
Cozzone P.J. [1 ]
Ranjeva J.-P. [1 ]
机构
[1] Centre de Résonance Magnétique Biologique et Médicale - UMR CNRS 6612, Faculté de Médecine, Université de la Méditerranée, Marseille
[2] Pôle de Neurosciences Cliniques, Service de Neurologie, Hôpital de La Timone, Marseille
关键词
Diffusion MRI; Functional MRI; Magnetization transfer imaging; MR spectroscopy; MRI; Multiple sclerosis;
D O I
10.1007/s12551-010-0031-6
中图分类号
学科分类号
摘要
Magnetic resonance imaging (MRI) has considerably improved the diagnosis and monitoring of multiple sclerosis (MS). Conventional MRI such as T2-weighted and gadolinium-enhanced T1-weighted sequences detect focal lesions of the white matter, damage of the blood-brain barrier, and tissue loss and inflammatory activity within lesions. However, these conventional MRI metrics lack the specificity required for characterizing the underlying pathophysiology, especially diffuse damage occurring throughout the whole central nervous system. To overcome these limitations, advanced MRI techniques have been developed to get more sensitive and specific parameters of focal and diffuse brain damage. Among these techniques, magnetization transfer imaging, diffusion MRI, functional MRI, and magnetic resonance spectroscopy are the most significant. In this article, we provide an overview of these advanced MRI techniques and their contribution to the better characterization and understanding of MS. © 2010 International Union for Pure and Applied Biophysics (IUPAB) and Springer.
引用
收藏
页码:83 / 90
页数:7
相关论文
共 61 条
[31]  
Kwong K.K., Belliveau J.W., Chesler D.A., Goldberg I.E., Weisskoff R.M., Poncelet B.P., Kennedy D.N., Hoppel B.E., Cohen M.S., Turner R., Et al., Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation, Proc Natl Acad Sci USA, 89, 12, pp. 5675-5679, (1992)
[32]  
Lassmann H., Bruck W., Lucchinetti C.F., The immunopathology of multiple sclerosis: an overview, Brain Pathol, 17, 2, pp. 210-218, (2007)
[33]  
Miller D.H., Biomarkers and surrogate outcomes in neurodegenerative disease: lessons from multiple sclerosis, NeuroRx, 1, 2, pp. 284-294, (2004)
[34]  
Mori S., van Zijl P.C., Fiber tracking: principles and strategies - a technical review, NMR Biomed, 15, 7-8, pp. 468-480, (2002)
[35]  
Neema M., Stankiewicz J., Arora A., Guss Z.D., Bakshi R., MRI in multiple sclerosis: what's inside the toolbox?, Neurotherapeutics, 4, 4, pp. 602-617, (2007)
[36]  
Ogawa S., Lee T.M., Kay A.R., Tank D.W., Brain magnetic resonance imaging with contrast dependent on blood oxygenation, Proc Natl Acad Sci USA, 87, 24, pp. 9868-9872, (1990)
[37]  
Pantano P., Mainero C., Lenzi D., Caramia F., Iannetti G.D., Piattella M.C., Pestalozza I., Di Legge S., Bozzao L., Pozzilli C., A longitudinal fMRI study on motor activity in patients with multiple sclerosis, Brain, 128, Pt 9, pp. 2146-2153, (2005)
[38]  
Parry A.M., Scott R.B., Palace J., Smith S., Matthews P.M., Potentially adaptive functional changes in cognitive processing for patients with multiple sclerosis and their acute modulation by rivastigmine, Brain, 126, Pt 12, pp. 2750-2760, (2003)
[39]  
Ranjeva J.P., Audoin B., Au Duong M.V., Ibarrola D., Confort-Gouny S., Malikova I., Soulier E., Viout P., Ali-Cherif A., Pelletier J., Cozzone P., Local tissue damage assessed with statistical mapping analysis of brain magnetization transfer ratio: relationship with functional status of patients in the earliest stage of multiple sclerosis, Am J Neuroradiol, 26, 1, pp. 119-127, (2005)
[40]  
Reuter F., Del Cul A., Malikova I., Naccache L., Confort-Gouny S., Cohen L., Cherif A.A., Cozzone P.J., Pelletier J., Ranjeva J.P., Dehaene S., Audoin B., White matter damage impairs access to consciousness in multiple sclerosis, Neuroimage, 44, 2, pp. 590-599, (2009)