Liquid-glass transition as the freezing of characteristic acoustic frequencies

被引:0
作者
D. S. Sanditov
机构
[1] Buryat State University,Buryat Scientific Center, Siberian Branch
[2] Russian Academy of Sciences,undefined
来源
Journal of Experimental and Theoretical Physics | 2010年 / 111卷
关键词
Glass Transition; Viscous Flow; Valence Bond; Excited Atom; Bridge Oxygen Atom;
D O I
暂无
中图分类号
学科分类号
摘要
Half-quantum interpretation is proposed for the liquid-glass transition as the freezing of characteristic acoustic frequencies (degrees of freedom) that are related to the molecular mobility of delocalized excited kinetic units, namely, linear quantum oscillators. There exists a correlation between the energy quantum of an elementary excitation (atom delocalization energy) and the glass transition temperature, which is proportional to the characteristic Einstein temperature. By analogy with the Einstein theory of the heat capacity of solids, the temperature range of the concentration of excited atoms in an amorphous medium is divided into the following two regions: a high-temperature region with a linear temperature dependence of this concentration and a low-temperature region, where the concentration of excited atoms decreases exponentially to the limiting minimum value (about 3%). At this value, the viscosity increases to a critical value (about 1012 Pa s), which corresponds to the glass transition temperature, i.e., the temperature of freezing the mobility of excited kinetic units. The temperature dependence of the free activation energy of viscous flow in the glass transition range is specified by the temperature dependence of the relative number of excited atoms.
引用
收藏
页码:749 / 759
页数:10
相关论文
共 59 条
[1]  
Berlin Al. Al.(1993)undefined Vysokomol. Soedin., Ser. A 35 857-undefined
[2]  
Rotenburg L.(1958)undefined J. Chem. Phys. 28 373-undefined
[3]  
Baserst R.(2006)undefined Zh. Éksp. Teor. Fiz. 130 944-undefined
[4]  
Gibbs J. H.(2005)undefined J. Non-Cryst. Solids 351 3371-undefined
[5]  
Di Marzio E. A.(2007)undefined Zh. Éksp. Teor. Fiz. 132 1352-undefined
[6]  
Ozhovan M. I.(2000)undefined J. Appl. Phys. 88 3113-undefined
[7]  
Tanaka H.(2008)undefined J. Am. Ceram. Soc. 91 709-undefined
[8]  
Pryadil’shchikov A. Yu.(2006)undefined Rev. Mod. Phys. 78 953-undefined
[9]  
Kosilov A. T.(1981)undefined Adv. Chem. Phys. 48 455-undefined
[10]  
Evteev A. V.(1987)undefined Usp. Fiz. Nauk 152 623-undefined