Finite Dimensional Global Attractor for a Fractional Schrödinger Type Equation with Mixed Anisotropic Dispersion

被引:0
作者
Brahim Alouini
机构
[1] University of Monastir,Research Lab 18ES17: Analysis, Probability and Fractals
[2] Faculty of Sciences of Monastir,undefined
[3] I.P.E.I. Monastir,undefined
来源
Journal of Dynamics and Differential Equations | 2022年 / 34卷
关键词
Schrödinger equation; Half-wave equation; Global attractor; Fractal dimension; 35B40; 35Q55; 76B03; 37L30;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Cauchy problem for a class of nonlinear damped fractional Schrödinger type equation in a two dimensional unbounded domain. Then, we focus on long-time behaviour of the solutions proving that this behaviour is described by the existence of regular finite-dimensional global attractor in the energy space.
引用
收藏
页码:1237 / 1268
页数:31
相关论文
共 53 条
  • [1] Alouini B(2015)Finite dimensional global attractor for a Bose–Einstein equation in a two dimensional unbounded domain Commun. Pure Appl. Anal. 14 1781-1801
  • [2] Alouini B(2019)Finite dimensional global attractor for a dissipative anisotropic fourth order Schrödinger equation J. Differ. Equ. 266 6037-6067
  • [3] Alouini B(2014)Regularity of the attractor for a Bose–Einstein equation in a two dimensional unbounded domain Discrete Contin. Dyn. Syst. B 19 651-677
  • [4] Goubet O(2002)Scaling, stability and singularities for nonlinear, dispersive wave equations: the critical case Nonlinearity 15 759-786
  • [5] Angulo J(2004)Global attractors for damped semilinear wave equations Discrete Contin. Dyn. Syst. A 10 31-52
  • [6] Bona J(1999)Spectrat bifurcation in dispersive wave turbulence PNAS 96 14216-14221
  • [7] Linares F(2018)Ill-posedness of the cubic nonlinear half-have equation and other fractional NLS on the real line Int. Math. Res. Notices 2018 699-738
  • [8] Scialom M(2012)Hitchhiker’s guide to the fractional Sobolev spaces Bull. Sci. Math. 136 521-573
  • [9] Ball JM(2017)Mean field dynamics of boson stars Commun. Pure Appl. Math. 60 500-545
  • [10] Cai D(2015)Anisotropic Gagliardo–Nirenberg inequality with fractional derivatives Z. Angew. Math. Phys. 66 3345-3356