Numerical simulation of a compressible vortex–wall interaction

被引:0
作者
T. Murugan
S. De
A. Sreevatsa
S. Dutta
机构
[1] CSIR-Central Mechanical Engineering Research Institute,Mechanical Engineering
[2] NITK Surathkal,undefined
来源
Shock Waves | 2016年 / 26卷
关键词
Compressible vortex ring; Shock tube; Shock vortex interaction; Computational fluid dynamics; AUSM+ scheme; Higher order schemes;
D O I
暂无
中图分类号
学科分类号
摘要
The wall interaction of isolated compressible vortices generated from a short driver section shock tube has been simulated numerically by solving the Navier–Stokes equations in axisymmetric form. The dynamics of shock-free (incident shock Mach number M=1.36\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M = 1.36$$\end{document}) and shock-embedded (M=1.57)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M = 1.57)$$\end{document} compressible vortices near the wall has been studied in detail. The AUSM+ scheme with a fifth-order upwind interpolation formula is used for the convective fluxes. Time integration is performed using a low dissipative and dispersive fourth-order six-stage Runge–Kutta scheme. The evolution of primary and wall vortices has been shown using the velocity field, vorticity field, and numerical schlierens. The vortex impingement, shocklets, wall vortices, and their lift-off are clearly identified from the wall pressure time history. It has been observed that the maximum vorticity of the wall vortices reaches close to 30 % of the primary vortex for M=1.36\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M = 1.36$$\end{document} and it reaches up to 60 % for M=1.57\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M = 1.57$$\end{document}. The net pressure force on the wall due to incident shock impingement is dominant compared to the compressible vortex impingement and their evolution.
引用
收藏
页码:311 / 326
页数:15
相关论文
共 85 条
  • [1] Hornung H(1988)Detailed measurements in the transonic vertical flow over a delta wing Fluid Dyn. Res. 3 381-386
  • [2] Elsenaar A(2009)Shock effects on delta wing vortex breakdown J. Aircr. 46 903-914
  • [3] Schiavetta LA(1952)Experimental study of the formation of a vortex ring at the open end of a cylindrical shock tube J. Appl. Phys. 23 1065-1069
  • [4] Boelens OJ(1997)Shock formation by compressible vortex ring impinging on a wall Fluid Dyn. Res. 21 139-157
  • [5] Crippa S(2006)Compressible vortex ring studies with a number of generic body configurations AIAA J. 44 2962-2978
  • [6] Cummings RM(2008)Head-on collision of shock wave induced vortices with solid and perforated walls Phys. Fluids 20 016104-1261
  • [7] Fritz W(2010)Characteristics of counter-rotating vortex rings formed ahead of a compressible vortex ring Exp. Fluids 49 1247-332
  • [8] Badcock KJ(2008)On the collision of compressible vortex ring with wall J. Vis. 11 277-398
  • [9] Elder FK(2012)Experimental study on a compressible vortex ring in collision with a wall J. Vis. 15 321-142
  • [10] Hass N(2013)Head on collisions of compressible vortex rings on a smooth solid surface: effects of surface distance variation Shock Waves 23 381-382